The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductiv...The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductivity measurement, hardness test, X-ray diffraction analysis, field emission scanning electron microscopy and energy dispersive spectrometry. The results show that with increasing temperature from 380 to 465 ℃, the electric conductivity of normal homogenized sample decreases from 34.9%IACS to 28.7%IACS, the hardness increases from HV 96 to HV 146, and the area fraction of secondary phase reduces from 4.5% to 1.89%. While, DC homogenized sample has a higher hardness, a lower electric conductivity and a smaller area fraction of secondary phases at the same temperature. The DC enhances the homogenization process by promoting the diffusibility of the solute atoms and the mobility of vacancy.展开更多
To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general...To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general power view.In this model,the neighbor is the Moore pattern and the Weibull distribution is adopted to simulate the rock heterogeneousness.Using this model,the evolvements and acoustic emission of rock failure are simulated for four materials of different degree of homogeneousness (m=1,5,10,15).The results show that the heterogeneous characteristic has a great effect on the rock failure,the more the homogeneousness,the fewer the crack branches and the more concentrated acoustic emissions.The physical cellular automata theory gives a new idea for studying rock failure.展开更多
Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition a...Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition and die geometry on the distribution of total equivalent plastic strain were investigated. The results show that the strain distributions in the workpieces are inhomogeneous after CEC deformation. The strains of the both ends of the workpieces are lower than that of the center region. The process parameters have significant effects on the strain distribution. The friction between die and workpiece is detrimental to strain homogeneity, thus the friction should be decreased. In order to improve the strain homogeneity, a large corner radius and a low extrusion angle should be used.展开更多
Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO...Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.展开更多
An enhanced KR-fundamental measure functional (FMF) is elaborated and employed to investigate binary and ternary hard sphere fluids near a planar hard wall or confined within two planar hard walls separated by certa...An enhanced KR-fundamental measure functional (FMF) is elaborated and employed to investigate binary and ternary hard sphere fluids near a planar hard wall or confined within two planar hard walls separated by certain interval. The present enhanced KR-FMF incorporates respectively, for aim of comparison, a recent 3rd-order expansion equation of state (EOS) and a Boublfk's extension of Kolafa's EOS for HS mixtures. It is indicated that the two versions of the EOS lead to, in the framework of the enhanced KR-FMF, similar density profiles, but the 3rd-order EOS is more consistent with an exact scaled particle theory (SPT) relation than the BK EOS. Extensive comparison between the enhanced KR-FMF-3rd-order EOS predictions and corresponding density profiles produced in different periods indicates the excellent performance of the present enhanced KR-FMF-3rd-order EOS in comparison with other available density functional approximations (DFAs). There are two anomalous situations from whose density profiles all DFAs studied deviate significantly; however, subsequent new computer simulation results for state conditions similar to the two anomalous situations are in very excellent agreement with the present enhanced KR-FMF-3rd-order EOS. The present paper indicates that (i) the validity of the "naive" substitution elaborated in the present paper and peculiar to the original KR-FMF is still in operation even if inhomogeneoas mixtures are being dealt with; (ii) the high accuracy and self-consistency of the third order EOS seem to allow for application of the KR-FMF-third order EOS to more severe state conditions; and (iii) the "naive" substitution enables very easy the combination of the original KR-FMF with future's more accurate but potentially more complicated EOS of hard sphere mixtures.展开更多
To develop AZ91D alloys with fine microstructure, effects of the addition of rare earth (RE), Sr and RE + Sr on the dendrite growth and phase precipitation in AZ91D magnesium alloy were studied, respectively. The resu...To develop AZ91D alloys with fine microstructure, effects of the addition of rare earth (RE), Sr and RE + Sr on the dendrite growth and phase precipitation in AZ91D magnesium alloy were studied, respectively. The results show that the microstructure is refined and the morphology of β-Mg17A112 phase is modified with RE or Sr addition, especially with the RE+Sr composite addition which can reduce the average grain size of AZ91D alloy obviously to 141 μm. The needle-like or block-like new phases adhering to β-Mg17A112 phase form at interdendrites during solidification. The enrichment of RE or/and Sr elements in front of the solidification interface, especially at the tips of α-Mg dendrite, which restricts the growth of α-Mg dendrite, changes the preferential growth of α-Mg and finally results in the grain refinement and the blunting of α-Mg dendrite.展开更多
Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nit...Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow(Huanghe) River Delta, plant samples were collected from two typical salt marshes(Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis(P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences(P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.展开更多
Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed ...Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.展开更多
To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille...To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.展开更多
The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in t...The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and α-decay energies Qα have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in ^295118 α-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from ^283112 to ^295118 but dramatically from ^279110 to ^283112, which may be due to the subshell closure at Z = 110 in ^279110. The α-decay half-lives in 295118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The α-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the α-decay half-lives of Z=118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensil...The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensile test. The grain size of the a-Mg matrix decreases from 220, 160 and 93 μm after the homogenization treatment to 28, 3 and 16 μm in the three alloys after extrusion, respectively. The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy. At the same time, the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in the a-Mg matrix. In contrast, the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy. The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest, i.e., 255 MPa, increased by 120% as compared with that of as-cast samples.展开更多
In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundament...In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.展开更多
Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecul...Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.展开更多
With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settleme...With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized.展开更多
Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and ho...Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.展开更多
Design of a giant magnetostrictive ultrasonic transducer for progressive sheet forming was presented.A dynamic analysis of the theoretically designed ultrasonic vibration system was carried out using the finite elemen...Design of a giant magnetostrictive ultrasonic transducer for progressive sheet forming was presented.A dynamic analysis of the theoretically designed ultrasonic vibration system was carried out using the finite element method(FEM).In addition,simulations were performed to verify the theoretical design.Then,a magnetically conductive material was added between the giant magnetostrictive rod and the permanent magnet.Besides,magnetic field simulations of the transducer were performed.The influence of the material thickness of the magnetically conductive material on uniformity of the induced magnetic field was studied.Furthermore,the impedance analysis and amplitude measurement were performed to compare the performance of transducers with and without the magnetically conductive material.The experimental results show that the magnetic field uniformity is the highest when the magnetically conductive material has a thickness of about 1.6 mm.The output amplitude of the giant magnetostrictive transducer is improved by adding the magnetically conductive material.Moreover,the mechanical quality factor and impedance are reduced,while the transducer operates more stably.展开更多
AIM:To investigate the clinical features and survival of patients treated for cholangiocarcinoma in our institution and to analyze the factors affecting their survival.METHODS:This retrospective cohort study assessed ...AIM:To investigate the clinical features and survival of patients treated for cholangiocarcinoma in our institution and to analyze the factors affecting their survival.METHODS:This retrospective cohort study assessed patients diagnosed with cholangiocarcinoma between January 1997 and December 2007 at the University Malaya Medical Centre in Malaysia.The clinical data and associated outcomes were collected using a structured proforma.RESULTS:Of the 69 patients diagnosed with cholangiocarcinoma,38 (55%) were male;mean patient age was 61 years.Twelve patients (17%) had intrahepatic,38 (55%) had perihilar and 19 (28%) had distal tumors.Only 12 patients underwent curative surgery,including seven R0 resections.Only one patient died within 30 d after surgery.The overall median survival was 4 mo,whereas the median survival of R0 resected patients was 16 mo.The overall 1-,2-and 3-year cumulative survival rates were 67%,17% and 17%,respectively.Survival rates were significantly associated with curative resection (P=0.002),intrahepatic tumor (P=0.003),negative margin status (P=0.013),early tumor stage (P=0.016),higher tumor differentiation (P=0.032) and absence of jaundice (P=0.038).Multivariate analysis showed that tumor location was a significant independent predictor of patient survival.CONCLUSION:Curative,margin-negative resection of early stage,well-differentiated intrahepatic tumors is associated with improved patient survival.展开更多
Average L-shell fluorescence yields of some rare earth elements were determined using HPGe detector employing reflection geometry set up. Target atoms were excited using 59.5 keV gamma rays emerging from Am-241 source...Average L-shell fluorescence yields of some rare earth elements were determined using HPGe detector employing reflection geometry set up. Target atoms were excited using 59.5 keV gamma rays emerging from Am-241 source of strength 300 mCi. Background radiation and multiple scattering effects were minimized by properly shielding the detector. The elemental foils of uniform thickness and 99.9% purity were used in the present investigation. The fluorescent spectra were recorded in a 16 K multichannel - analyzer. The data were carefully analyzed and average L-shell fluorescence yields were calculated. The resulting yield values are compared with the available experimental and theoretical values.展开更多
基金Project(5157406)supported by the National Natural Science Foundation of China
文摘The effects of the direct current (DC) on the evolutions of hardness and morphology of the secondary phases in 7B04 aluminum alloy homogenized at 380?465 ℃ for 2 h were investigated in detail by electric conductivity measurement, hardness test, X-ray diffraction analysis, field emission scanning electron microscopy and energy dispersive spectrometry. The results show that with increasing temperature from 380 to 465 ℃, the electric conductivity of normal homogenized sample decreases from 34.9%IACS to 28.7%IACS, the hardness increases from HV 96 to HV 146, and the area fraction of secondary phase reduces from 4.5% to 1.89%. While, DC homogenized sample has a higher hardness, a lower electric conductivity and a smaller area fraction of secondary phases at the same temperature. The DC enhances the homogenization process by promoting the diffusibility of the solute atoms and the mobility of vacancy.
文摘To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general power view.In this model,the neighbor is the Moore pattern and the Weibull distribution is adopted to simulate the rock heterogeneousness.Using this model,the evolvements and acoustic emission of rock failure are simulated for four materials of different degree of homogeneousness (m=1,5,10,15).The results show that the heterogeneous characteristic has a great effect on the rock failure,the more the homogeneousness,the fewer the crack branches and the more concentrated acoustic emissions.The physical cellular automata theory gives a new idea for studying rock failure.
基金Projects (51074106, 50674067) supported by the National Natural Science Foundation of ChinaProject (09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality, China+1 种基金Project (2011-079) supported by the Shaanxi Scholarship Council,ChinaProject (20102015) supported by the Doctoral Startup Fund of TUST, China
文摘Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition and die geometry on the distribution of total equivalent plastic strain were investigated. The results show that the strain distributions in the workpieces are inhomogeneous after CEC deformation. The strains of the both ends of the workpieces are lower than that of the center region. The process parameters have significant effects on the strain distribution. The friction between die and workpiece is detrimental to strain homogeneity, thus the friction should be decreased. In order to improve the strain homogeneity, a large corner radius and a low extrusion angle should be used.
基金Supported by the Aeronautic Science Foundation of China(2008ZC52026)the Innovation Foundation of Nanjing University of Aeronautics and Astronautics~~
文摘Array configuration of multiple-input multiple-output (MIMO) radar with non-uniform linear array (NLA) is proposed. Unlike a standard phased-array radar where NLA is used to generate thinner beam patterns, in MIMO radar the property of NLA is exploited to get more distinct virtual array elements so as to improve pa- rameter identifiability, which means the maximum number of targets that can be uniquely identified by the radar. A class of NLA called minimum redundancy linear array (MRLA) is employed and a new method to construct large MRLAs is descrihed. The numerical results verify that compared to uniform linear array (ULA) MIMO radars, NLA MIMO radars can retain the same parameter identifiability with fewer physical antennas and achieve larger aperture length and lower Cramer-Rao bound with the same number of the physical antennas.
基金Supported by the National Natural Science Foundation of China under Grant No.20973202
文摘An enhanced KR-fundamental measure functional (FMF) is elaborated and employed to investigate binary and ternary hard sphere fluids near a planar hard wall or confined within two planar hard walls separated by certain interval. The present enhanced KR-FMF incorporates respectively, for aim of comparison, a recent 3rd-order expansion equation of state (EOS) and a Boublfk's extension of Kolafa's EOS for HS mixtures. It is indicated that the two versions of the EOS lead to, in the framework of the enhanced KR-FMF, similar density profiles, but the 3rd-order EOS is more consistent with an exact scaled particle theory (SPT) relation than the BK EOS. Extensive comparison between the enhanced KR-FMF-3rd-order EOS predictions and corresponding density profiles produced in different periods indicates the excellent performance of the present enhanced KR-FMF-3rd-order EOS in comparison with other available density functional approximations (DFAs). There are two anomalous situations from whose density profiles all DFAs studied deviate significantly; however, subsequent new computer simulation results for state conditions similar to the two anomalous situations are in very excellent agreement with the present enhanced KR-FMF-3rd-order EOS. The present paper indicates that (i) the validity of the "naive" substitution elaborated in the present paper and peculiar to the original KR-FMF is still in operation even if inhomogeneoas mixtures are being dealt with; (ii) the high accuracy and self-consistency of the third order EOS seem to allow for application of the KR-FMF-third order EOS to more severe state conditions; and (iii) the "naive" substitution enables very easy the combination of the original KR-FMF with future's more accurate but potentially more complicated EOS of hard sphere mixtures.
基金Project(50774075) supported by the National Natural Science Foundation of ChinaProject(2007CB613705) supported by the National Basic Research Program of China
文摘To develop AZ91D alloys with fine microstructure, effects of the addition of rare earth (RE), Sr and RE + Sr on the dendrite growth and phase precipitation in AZ91D magnesium alloy were studied, respectively. The results show that the microstructure is refined and the morphology of β-Mg17A112 phase is modified with RE or Sr addition, especially with the RE+Sr composite addition which can reduce the average grain size of AZ91D alloy obviously to 141 μm. The needle-like or block-like new phases adhering to β-Mg17A112 phase form at interdendrites during solidification. The enrichment of RE or/and Sr elements in front of the solidification interface, especially at the tips of α-Mg dendrite, which restricts the growth of α-Mg dendrite, changes the preferential growth of α-Mg and finally results in the grain refinement and the blunting of α-Mg dendrite.
基金Under the auspices of National Key R&D Program of China(No.2017YFC0505906)National Natural Science Foundation of China(No.51639001,51379012)Interdiscipline Research Funds of Beijing Normal University
文摘Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow(Huanghe) River Delta, plant samples were collected from two typical salt marshes(Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis(P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences(P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.
文摘Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.
基金Supported by the Natural Science Foundation of China under Grant Nos.10775061,10505016,10575119,and 10805016the CAS Knowledge Innovation Project under Grant No.KJCX-SYW-N02the Major State Basic Research Developing Program of China under Grant No.2007CB815004
文摘The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and α-decay energies Qα have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in ^295118 α-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from ^283112 to ^295118 but dramatically from ^279110 to ^283112, which may be due to the subshell closure at Z = 110 in ^279110. The α-decay half-lives in 295118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The α-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the α-decay half-lives of Z=118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金Project(2008S089)supported by the Key Laboratory Program of Liaoning Province,ChinaProject(2007010303025)supported by the Shenyang Talents Supporting,ChinaProject(50731002)supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensile test. The grain size of the a-Mg matrix decreases from 220, 160 and 93 μm after the homogenization treatment to 28, 3 and 16 μm in the three alloys after extrusion, respectively. The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy. At the same time, the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in the a-Mg matrix. In contrast, the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy. The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest, i.e., 255 MPa, increased by 120% as compared with that of as-cast samples.
基金Projects (U1334201,51525804) supported by the National Natural Science Foundation of ChinaProject (15CXTD0005) supported by the Sichuan Province Youth Science and Technology Innovation Team,China
文摘In a wind-vehicle-bridge(WVB) system,there are various interactions among wind,vehicle and bridge.The mechanism for coupling vibration of wind-vehicle-bridge systems is explored to demonstrate the effects of fundamental factors,such as mean wind,fluctuating wind,buffeting,rail irregularities,light rail vehicle vibration and bridge stiffness.A long cable-stayed bridge which carries light rail traffic is regarded as a numerical example.Firstly,a finite element model is built for the long cable-stayed bridge.The deck can generally be idealized as three-dimensional spine beam while cables are modeled as truss elements.Vehicles are modeled as mass-spring-damper systems.Rail irregularities and wind fluctuation are simulated in time domain by spectrum representation method.Then,aerodynamic loads on vehicle and bridge deck are measured by section model wind tunnel tests.Eight vertical and torsional flutter derivatives of bridge deck are identified by weighting ensemble least-square method.Finally,dynamic responses of the WVB system are analyzed in a series of cases.The results show that the accelerations of the vehicle are excited by the fluctuating wind and the track irregularity to a great extent.The transverse forces of wheel axles mainly depend on the track irregularity.The displacements of the bridge are predominantly determined by the mean wind and restricted by its stiffness.And the accelerations of the bridge are enlarged after adding the fluctuating wind.
文摘Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.
文摘With the increase of axle load and the train speed, dynamic interaction of train-track system becomes so exacerbated that the deformation and dynamic response of subgrade are more aggravated. The differential settlement will be created in bridge-embankment transition section under such dynamic action, and an adverse effect on the train operation safety can be caused. Meanwhile, differential settlement will produce additional dynamic effect when high-speed trains go through the transition between bridge-embankment. Such dynamic action will aggravate the differential settlement and subgrade damage. This paper applies the methods of field test and finite-element to systematically study the dynamic response characteristics of subgrade in bridge-embankment transition section of heavy haul railway under dynamic load for the first time. This research is focused on the analysis of influence of the different axle load, train speed, filled soil modulus, etc.. At last, the dynamic response rules are systematically summarized.
基金Supported by the National Natural Science Foundation of China (50706007 50976025) the National Key Program of Basic Research in China (2010CB732206)+1 种基金 the Foundation of Excellent Young Scholar of Southeast University (4003001039) the Collaboration Project of China and British (2010DFA61960)
文摘Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.
基金supported by the National Science Foundation of China(No.51675422)the Shaanxi Province Key Research and Development Plan Project of China(No.2017GY-028)。
文摘Design of a giant magnetostrictive ultrasonic transducer for progressive sheet forming was presented.A dynamic analysis of the theoretically designed ultrasonic vibration system was carried out using the finite element method(FEM).In addition,simulations were performed to verify the theoretical design.Then,a magnetically conductive material was added between the giant magnetostrictive rod and the permanent magnet.Besides,magnetic field simulations of the transducer were performed.The influence of the material thickness of the magnetically conductive material on uniformity of the induced magnetic field was studied.Furthermore,the impedance analysis and amplitude measurement were performed to compare the performance of transducers with and without the magnetically conductive material.The experimental results show that the magnetic field uniformity is the highest when the magnetically conductive material has a thickness of about 1.6 mm.The output amplitude of the giant magnetostrictive transducer is improved by adding the magnetically conductive material.Moreover,the mechanical quality factor and impedance are reduced,while the transducer operates more stably.
文摘AIM:To investigate the clinical features and survival of patients treated for cholangiocarcinoma in our institution and to analyze the factors affecting their survival.METHODS:This retrospective cohort study assessed patients diagnosed with cholangiocarcinoma between January 1997 and December 2007 at the University Malaya Medical Centre in Malaysia.The clinical data and associated outcomes were collected using a structured proforma.RESULTS:Of the 69 patients diagnosed with cholangiocarcinoma,38 (55%) were male;mean patient age was 61 years.Twelve patients (17%) had intrahepatic,38 (55%) had perihilar and 19 (28%) had distal tumors.Only 12 patients underwent curative surgery,including seven R0 resections.Only one patient died within 30 d after surgery.The overall median survival was 4 mo,whereas the median survival of R0 resected patients was 16 mo.The overall 1-,2-and 3-year cumulative survival rates were 67%,17% and 17%,respectively.Survival rates were significantly associated with curative resection (P=0.002),intrahepatic tumor (P=0.003),negative margin status (P=0.013),early tumor stage (P=0.016),higher tumor differentiation (P=0.032) and absence of jaundice (P=0.038).Multivariate analysis showed that tumor location was a significant independent predictor of patient survival.CONCLUSION:Curative,margin-negative resection of early stage,well-differentiated intrahepatic tumors is associated with improved patient survival.
文摘Average L-shell fluorescence yields of some rare earth elements were determined using HPGe detector employing reflection geometry set up. Target atoms were excited using 59.5 keV gamma rays emerging from Am-241 source of strength 300 mCi. Background radiation and multiple scattering effects were minimized by properly shielding the detector. The elemental foils of uniform thickness and 99.9% purity were used in the present investigation. The fluorescent spectra were recorded in a 16 K multichannel - analyzer. The data were carefully analyzed and average L-shell fluorescence yields were calculated. The resulting yield values are compared with the available experimental and theoretical values.