The distribution and verticals variation of geochemical components in the Kasnau-Matasukh lignites of Nagaur Basin, Rajasthan, were investigated using microscopy, proximate and ultimate analyses, Rock-Eval Pyrolysis, ...The distribution and verticals variation of geochemical components in the Kasnau-Matasukh lignites of Nagaur Basin, Rajasthan, were investigated using microscopy, proximate and ultimate analyses, Rock-Eval Pyrolysis, X-ray diffraction and Fourier Transform Infrared analyses, and major/minor/trace element determination. The relationship of elements with ash content and with macerals have also been discussed. These lignites are stratified, black, dominantly composed of huminite group macerals with subordinated amounts of liptinite and inertinite groups. They are classified as type-III kerogen and are mainly gas prone in nature. The concentration (in vol%) of mineral matter is seen to increase towards upper part of seam and so is the concentration (in wt%) of the volatile matter, elemental carbon and sulphur. The common minerals present in these lignitesare mixed clay layer, chlorite, and quartz as identified by X-ray diffraction study. Compared with world average in brown coal, the bulk concentration of Cu is anomalously high in most of the samples while Cd is 2-3 times high and Zn is high in one band. Based on interrelationship, different pyrite forms are noticed to have different preferential enrichment of various elements. The concentration of disseminated pyrite is more than the other pyrite forms and is followed by discrete pyrite grains and massive pyrite.展开更多
Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods i...Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods including chemical methods,X-ray fluorescence and atomic absorption spectrometry are advanced and accurate.However,in some applications,such as on-line assaying process,high accuracy is required.In this paper,an algorithm based on Kalman Filter is presented to predict on-line XRF errors.This research has been carried out on the basis of based the industrial real data collection for evaluating the performance of the presented algorithm.The measurements and analysis for this study were conducted at the Sarcheshmeh Copper Concentrator Plant located in Iran.The quality of the obtained results was very satisfied;so that the RMS errors of prediction obtained for Cu and Mo grade assaying errors in rougher feed were less than 0.039 and 0.002 and in final flotation concentration less than 0.58 and 0.074,respectively.The results indicate that the mentioned method is quite accurate to reduce the on-line XRF errors measurement.展开更多
Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, ...Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, and fluorescence spectra were also measured to identify the complexes. Elemental analysis showed that the compositions of these complexes were Tb(p-BrBA)3- H20, Tb(p-CIBA)3- 2H20, Tb(p-FBA)3- H20, Tb(o-FBA)3·2H20, Tb(o-CIBA)3· H20, and Tb(o-BrBA)3. H20, respectively. The monodispersed Ag@SiO2 core-shell nanoparticles with silica thicknesses of 10, 15, and 25 nm were success- fully prepared and characterized by transmission-electron microscopy. Fluorescence intensities of the complexes were detected before and after Ag@SiO2core-shell nanoparticles were added; the enhancement times were related to the silica-shell thick- ness. The fluorescence enhancement times were largest when the thickness of the silica shell was 25 nm. The mechanism may be attributed to the localized surface-plasmon resonance. Furthermore, the enhancement effect of terbium fluoro-benzoate complexes was the strongest in these complexes. This result may be attributed to the hydrogen bond between the hydroxyl on the surface of the silica shell and the fluorine atom.展开更多
文摘The distribution and verticals variation of geochemical components in the Kasnau-Matasukh lignites of Nagaur Basin, Rajasthan, were investigated using microscopy, proximate and ultimate analyses, Rock-Eval Pyrolysis, X-ray diffraction and Fourier Transform Infrared analyses, and major/minor/trace element determination. The relationship of elements with ash content and with macerals have also been discussed. These lignites are stratified, black, dominantly composed of huminite group macerals with subordinated amounts of liptinite and inertinite groups. They are classified as type-III kerogen and are mainly gas prone in nature. The concentration (in vol%) of mineral matter is seen to increase towards upper part of seam and so is the concentration (in wt%) of the volatile matter, elemental carbon and sulphur. The common minerals present in these lignitesare mixed clay layer, chlorite, and quartz as identified by X-ray diffraction study. Compared with world average in brown coal, the bulk concentration of Cu is anomalously high in most of the samples while Cd is 2-3 times high and Zn is high in one band. Based on interrelationship, different pyrite forms are noticed to have different preferential enrichment of various elements. The concentration of disseminated pyrite is more than the other pyrite forms and is followed by discrete pyrite grains and massive pyrite.
基金the support of the Department of Research and Development of Sarcheshmeh Copper Plants for this research
文摘Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods including chemical methods,X-ray fluorescence and atomic absorption spectrometry are advanced and accurate.However,in some applications,such as on-line assaying process,high accuracy is required.In this paper,an algorithm based on Kalman Filter is presented to predict on-line XRF errors.This research has been carried out on the basis of based the industrial real data collection for evaluating the performance of the presented algorithm.The measurements and analysis for this study were conducted at the Sarcheshmeh Copper Concentrator Plant located in Iran.The quality of the obtained results was very satisfied;so that the RMS errors of prediction obtained for Cu and Mo grade assaying errors in rougher feed were less than 0.039 and 0.002 and in final flotation concentration less than 0.58 and 0.074,respectively.The results indicate that the mentioned method is quite accurate to reduce the on-line XRF errors measurement.
基金supported by the National Natural Science Foundation of China(21161013)the Natural Science Foundation of Inner Mongolia(2011MS0202)the Opening Foundation for Significant Fundamental Research of Inner Mongolia(2010KF03)
文摘Six kinds of terbium ternary complexes with halo-benzoic acids were synthesized. Their compositions were determined by C, H elemental analyzer and EDTA titration. The infrared spectra, ultraviolet absorption spectra, and fluorescence spectra were also measured to identify the complexes. Elemental analysis showed that the compositions of these complexes were Tb(p-BrBA)3- H20, Tb(p-CIBA)3- 2H20, Tb(p-FBA)3- H20, Tb(o-FBA)3·2H20, Tb(o-CIBA)3· H20, and Tb(o-BrBA)3. H20, respectively. The monodispersed Ag@SiO2 core-shell nanoparticles with silica thicknesses of 10, 15, and 25 nm were success- fully prepared and characterized by transmission-electron microscopy. Fluorescence intensities of the complexes were detected before and after Ag@SiO2core-shell nanoparticles were added; the enhancement times were related to the silica-shell thick- ness. The fluorescence enhancement times were largest when the thickness of the silica shell was 25 nm. The mechanism may be attributed to the localized surface-plasmon resonance. Furthermore, the enhancement effect of terbium fluoro-benzoate complexes was the strongest in these complexes. This result may be attributed to the hydrogen bond between the hydroxyl on the surface of the silica shell and the fluorine atom.