The spin-3/2 B1ume-Capel model is studied using the heating and cooling algorithms improved from the Creutz cellular automaton (CCA). The calculations are done on various sizes of the simple cubic lattice in the 0 ...The spin-3/2 B1ume-Capel model is studied using the heating and cooling algorithms improved from the Creutz cellular automaton (CCA). The calculations are done on various sizes of the simple cubic lattice in the 0 ≤ D/J ≤ 5 parameter region. The phase diagram of the model and temperature variation of the thermodynamic quantities are obtained. We confirm the existence of a critical end point within the heating calculations. However, in contrast to the heating calculations, we do not obtain the first-order line at low temperature with cooling algorithm calculations. The results are compared with those of other theories.展开更多
基金Supported by the Scientific and Technological Research Council of Turkey (TBITAK) under Grant No. 109T018
文摘The spin-3/2 B1ume-Capel model is studied using the heating and cooling algorithms improved from the Creutz cellular automaton (CCA). The calculations are done on various sizes of the simple cubic lattice in the 0 ≤ D/J ≤ 5 parameter region. The phase diagram of the model and temperature variation of the thermodynamic quantities are obtained. We confirm the existence of a critical end point within the heating calculations. However, in contrast to the heating calculations, we do not obtain the first-order line at low temperature with cooling algorithm calculations. The results are compared with those of other theories.