Co0.6Cu0.16Ni0.24Fe2O4/multi-walled carbon nanotube nanocomposites (CCNF/MWCNTs) were synthesized by solution filling method.The phase structure,thermal stability,morphology and electrical-magnetic properties of the s...Co0.6Cu0.16Ni0.24Fe2O4/multi-walled carbon nanotube nanocomposites (CCNF/MWCNTs) were synthesized by solution filling method.The phase structure,thermal stability,morphology and electrical-magnetic properties of the samples were characterized by means of modern testing technology.The effect of iron concentration,filling time,sintering temperature on their electrical and magnetic performance was discussed.The results indicated that conductivity was related to the content of MWCNTs,while the magnetism correlated with the volume fraction of the filled CCNF in the composites.When the optimal condition satisfied the filling time of 18 h,ferric concentration of 0.25 mol L-1 and sintering temperature of 350°C,the prepared composite had the best magnetic loss performance,and its minimum reflection loss reached-22.47 dB on 9.76 GHz,the available bandwidth was beyond 2.0 GHz.Hence,the obtained composite can be used as advancing absorption and shielding material due to its favorable microwave absorbing property.展开更多
Facile synthesis of an interfacial layer in organic solar cells (OSCs) is important for broadening material designs and upscaling photovoltaic conversion efficiency (PCE).Herein,a mild solution process of spin-coating...Facile synthesis of an interfacial layer in organic solar cells (OSCs) is important for broadening material designs and upscaling photovoltaic conversion efficiency (PCE).Herein,a mild solution process of spin-coating In(acac)3and Ga(acac)3isopropanol precursors followed by low-temperature thermal treatment was developed to fabricate In_(2)O_(3)and Ga2O3cathode buffer layers (CBLs).The introduction of In_(2)O_(3)or Ga2O3CBLs endows PM6:Y6-based OSCs with outstanding performance and high PCEs of 16.17%and 16.01%,respectively.Comparison studies present that the In_(2)O_(3)layer possesses a work function (WF) of 4.58 eV,which is more favorable for the formation of ohmic contact compared with the Ga2O3layer with a WF of 5.06 eV and leads to a higher open circuit voltage for the former devices.Electrochemical impedance spectroscopy was performed to reveal how In_(2)O_(3)and Ga2O3affect the internal charge transfer and the origin of their performance difference.Although In_(2)O_(3)possesses lower series resistance loss,Ga2O3has a higher recombination resistance,which enhances the device fill factor and compensates for its series resistance loss to some extent.Comparative analysis of the photo-physics of In_(2)O_(3)and Ga2O3suggests that both are excellent CBLs for highly efficient OSCs.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 21071125)the Science and Technology Key Project of Zhejiang Province (Grant No. 2010C11053)the subproject of Science-Technology Innovation Team in Zhejiang Province (Grant No.2011R09006-06)
文摘Co0.6Cu0.16Ni0.24Fe2O4/multi-walled carbon nanotube nanocomposites (CCNF/MWCNTs) were synthesized by solution filling method.The phase structure,thermal stability,morphology and electrical-magnetic properties of the samples were characterized by means of modern testing technology.The effect of iron concentration,filling time,sintering temperature on their electrical and magnetic performance was discussed.The results indicated that conductivity was related to the content of MWCNTs,while the magnetism correlated with the volume fraction of the filled CCNF in the composites.When the optimal condition satisfied the filling time of 18 h,ferric concentration of 0.25 mol L-1 and sintering temperature of 350°C,the prepared composite had the best magnetic loss performance,and its minimum reflection loss reached-22.47 dB on 9.76 GHz,the available bandwidth was beyond 2.0 GHz.Hence,the obtained composite can be used as advancing absorption and shielding material due to its favorable microwave absorbing property.
基金supported by the National Natural Science Foundation of China (51573042,61874148,51873007,5181101540 and 21835006)the Fundamental Research Funds for the Central Universities in China (2019MS025 and 2018MS032)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (LAPS20003)。
文摘Facile synthesis of an interfacial layer in organic solar cells (OSCs) is important for broadening material designs and upscaling photovoltaic conversion efficiency (PCE).Herein,a mild solution process of spin-coating In(acac)3and Ga(acac)3isopropanol precursors followed by low-temperature thermal treatment was developed to fabricate In_(2)O_(3)and Ga2O3cathode buffer layers (CBLs).The introduction of In_(2)O_(3)or Ga2O3CBLs endows PM6:Y6-based OSCs with outstanding performance and high PCEs of 16.17%and 16.01%,respectively.Comparison studies present that the In_(2)O_(3)layer possesses a work function (WF) of 4.58 eV,which is more favorable for the formation of ohmic contact compared with the Ga2O3layer with a WF of 5.06 eV and leads to a higher open circuit voltage for the former devices.Electrochemical impedance spectroscopy was performed to reveal how In_(2)O_(3)and Ga2O3affect the internal charge transfer and the origin of their performance difference.Although In_(2)O_(3)possesses lower series resistance loss,Ga2O3has a higher recombination resistance,which enhances the device fill factor and compensates for its series resistance loss to some extent.Comparative analysis of the photo-physics of In_(2)O_(3)and Ga2O3suggests that both are excellent CBLs for highly efficient OSCs.