预警负荷会严重影响电力系统的安全经济运行。面向参与车辆到电网(vehicle to grid,V2G)服务的电动汽车用户,综合考虑预警负荷、预警电价和充电激励措施对充放电过程的影响,提出基于改进粒子群算法(improved particle sw arm optimizati...预警负荷会严重影响电力系统的安全经济运行。面向参与车辆到电网(vehicle to grid,V2G)服务的电动汽车用户,综合考虑预警负荷、预警电价和充电激励措施对充放电过程的影响,提出基于改进粒子群算法(improved particle sw arm optimization,IPSO)的电动汽车充放电优化策略。通过计算预警负荷发生时的放电奖励,建立预警负荷电价模型、电池容量损耗模型,基于分时电价和放电激励制度建立用户充放电成本模型。此外,引入长短时记忆的概念,提出改进粒子群优化算法。在上述模型和算法的基础上,以最小化用户成本为优化目标,计及用户充电需求和充放电功率等约束,提出不同预警负荷情况下的充放电优化策略。在MATLAB中完成了仿真验证,结果表明,在已知预测预警负荷的前提下,采用文中的充放电优化策略能够提高电动汽车用户V2G参与度,有效降低用户成本,并缓解预警负荷发生时电网压力。展开更多
文摘预警负荷会严重影响电力系统的安全经济运行。面向参与车辆到电网(vehicle to grid,V2G)服务的电动汽车用户,综合考虑预警负荷、预警电价和充电激励措施对充放电过程的影响,提出基于改进粒子群算法(improved particle sw arm optimization,IPSO)的电动汽车充放电优化策略。通过计算预警负荷发生时的放电奖励,建立预警负荷电价模型、电池容量损耗模型,基于分时电价和放电激励制度建立用户充放电成本模型。此外,引入长短时记忆的概念,提出改进粒子群优化算法。在上述模型和算法的基础上,以最小化用户成本为优化目标,计及用户充电需求和充放电功率等约束,提出不同预警负荷情况下的充放电优化策略。在MATLAB中完成了仿真验证,结果表明,在已知预测预警负荷的前提下,采用文中的充放电优化策略能够提高电动汽车用户V2G参与度,有效降低用户成本,并缓解预警负荷发生时电网压力。