Heat transfer coefficients between an immersed horizontal tube and an aerated vibrated fluidized bed are measured. There is a maximum value in the h-P experimental curve. The heat transfer coefficient increases with d...Heat transfer coefficients between an immersed horizontal tube and an aerated vibrated fluidized bed are measured. There is a maximum value in the h-P experimental curve. The heat transfer coefficient increases with decreases in particle diameter in the fully fluidized region. The particle density has less effect on the heat transfer coefficients. High amplitude and low frequency, or low amplitude and high frequency are favorable to heat transfer. Exceedingly high gas velocity is unfavorable to the surface-bed heat transfer. A model based on the 'pocket' theory was proposed for predicting the surface-to-bed heat transfer coefficients in fully fluidized region. The predictions from the model were compared with observed data. The reasonable fit suggests the adequacy of the model.展开更多
Inflatable space structures may undergo the vibration of a long duration because of their features of dynamic deployment,high flexibility,and low-frequency modes.In this paper,a topology optimization methodology is pr...Inflatable space structures may undergo the vibration of a long duration because of their features of dynamic deployment,high flexibility,and low-frequency modes.In this paper,a topology optimization methodology is proposed to reduce the vibration of a spinning inflatable structure.As the first step,a variable-length shell element is developed in the framework of arbitrary Lagrange-Euler(ALE)and absolute nodal coordinate formulation(ANCF)to accurately model the deployment dynamics of the inflatable structure.With the help of two additional material coordinates,the shell element of ALE-ANCF has the ability to describe the large deformation,large overall motion,and variable length of an inflatable structure.The nonlinear elastic forces and additional inertial forces induced by the variable length are analytically derived.In the second step,a topology optimization procedure is presented for the dynamic response of an inflatable structure through the integration of the equivalent static loads(ESL)method and the density method.The ESL sets of the variable-length inflatable structure are defined to simplify the dynamic topology optimization into a static one,while the density-based topology optimization method is used to describe the topology of the inflatable structure made of two materials and solve the static optimization problem.In order to obtain more robust optimization results,sensitivity analysis,density filter,and projection techniques are also utilized.Afterwards,a benchmark example is presented to validate the ALE-ANCF modeling scheme.The deployment dynamics and corresponding topology optimization of a spinning inflatable structure are studied to show the effectiveness of the proposed topology optimization methodology.展开更多
基金Supported by the National Natural Science Foundation of China(No.29576253).
文摘Heat transfer coefficients between an immersed horizontal tube and an aerated vibrated fluidized bed are measured. There is a maximum value in the h-P experimental curve. The heat transfer coefficient increases with decreases in particle diameter in the fully fluidized region. The particle density has less effect on the heat transfer coefficients. High amplitude and low frequency, or low amplitude and high frequency are favorable to heat transfer. Exceedingly high gas velocity is unfavorable to the surface-bed heat transfer. A model based on the 'pocket' theory was proposed for predicting the surface-to-bed heat transfer coefficients in fully fluidized region. The predictions from the model were compared with observed data. The reasonable fit suggests the adequacy of the model.
基金the National Natural Science Foundation of China(Grant Nos.12002153,11827801,and 11832005)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200434)the Fundamental Research Funds for the Central Universities(Grant No.NS2021003).
文摘Inflatable space structures may undergo the vibration of a long duration because of their features of dynamic deployment,high flexibility,and low-frequency modes.In this paper,a topology optimization methodology is proposed to reduce the vibration of a spinning inflatable structure.As the first step,a variable-length shell element is developed in the framework of arbitrary Lagrange-Euler(ALE)and absolute nodal coordinate formulation(ANCF)to accurately model the deployment dynamics of the inflatable structure.With the help of two additional material coordinates,the shell element of ALE-ANCF has the ability to describe the large deformation,large overall motion,and variable length of an inflatable structure.The nonlinear elastic forces and additional inertial forces induced by the variable length are analytically derived.In the second step,a topology optimization procedure is presented for the dynamic response of an inflatable structure through the integration of the equivalent static loads(ESL)method and the density method.The ESL sets of the variable-length inflatable structure are defined to simplify the dynamic topology optimization into a static one,while the density-based topology optimization method is used to describe the topology of the inflatable structure made of two materials and solve the static optimization problem.In order to obtain more robust optimization results,sensitivity analysis,density filter,and projection techniques are also utilized.Afterwards,a benchmark example is presented to validate the ALE-ANCF modeling scheme.The deployment dynamics and corresponding topology optimization of a spinning inflatable structure are studied to show the effectiveness of the proposed topology optimization methodology.