Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics an...Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics and higher electronic conductivity.Nevertheless,their performance still undergoes adverse decline during electrochemical processes mainly due to poor intrinsic ionic conductivities,large volume expansions,and structural agglomeration and fracture.To tackle these problems,various strategies have been applied to engineer the BMC nanostructures to obtain optimized electrode materials.However,the lack of understanding of the electrochemical response of BMCs still hinders their large-scale application.This review not only highlights the recent progress and development in the preparation of BMC-based electrode materials but also explains the kinetics to further understand the relation between structure and performance.It will also explain the engineering of BMCs through nanostructuring and formation of their hybrid structures with various carbonaceous materials and three-dimensional(3 D)templates.The review will discuss the detailed working mechanism of BMC-based nanostructures in various electrochemical energy storage(EES)systems including supercapacitors,metal-ion batteries,metal-air batteries,and alkaline batteries.In the end,major challenges and prospective solutions for the development of BMCs in EES devices are also outlined.We believe that the current review will provide a guideline for tailoring BMCs for better electrochemical devices.展开更多
基金supported by the National Natural Science Fund for Distinguished Young Scholars(52025133)the Tencent Foundation through the XPLORER PRIZE,Beijing Natural Science Foundation(JQ18005)+2 种基金the National Natural Science Foundation of China(52125307 and 11974023)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnic University(NWPU)(SKLSP202004)the Key Area R&D Program of Guangdong Province(2018B030327001 and 2018B010109009)。
文摘Binary metal chalcogenides(BMCs)have shown better electrochemical performance compared with their mono metal counterparts owing to their abundant phase interfaces,higher active sites,faster electrochemical kinetics and higher electronic conductivity.Nevertheless,their performance still undergoes adverse decline during electrochemical processes mainly due to poor intrinsic ionic conductivities,large volume expansions,and structural agglomeration and fracture.To tackle these problems,various strategies have been applied to engineer the BMC nanostructures to obtain optimized electrode materials.However,the lack of understanding of the electrochemical response of BMCs still hinders their large-scale application.This review not only highlights the recent progress and development in the preparation of BMC-based electrode materials but also explains the kinetics to further understand the relation between structure and performance.It will also explain the engineering of BMCs through nanostructuring and formation of their hybrid structures with various carbonaceous materials and three-dimensional(3 D)templates.The review will discuss the detailed working mechanism of BMC-based nanostructures in various electrochemical energy storage(EES)systems including supercapacitors,metal-ion batteries,metal-air batteries,and alkaline batteries.In the end,major challenges and prospective solutions for the development of BMCs in EES devices are also outlined.We believe that the current review will provide a guideline for tailoring BMCs for better electrochemical devices.