期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图时空神经网络的多充电站负荷协同预测方法 被引量:4
1
作者 王宁 陈宇 李波 《汽车工程学报》 2023年第5期760-772,共13页
针对传统充电站负荷预测方法只能实现对单一站点预测的问题,提出一种基于图时空神经网络(Graph Spatiotemporal Neural Network,GSTNN)模型的多充电站负荷协同预测方法。定义时空信息图,描述充电站负荷之间的时空关系;构建时空特征提取... 针对传统充电站负荷预测方法只能实现对单一站点预测的问题,提出一种基于图时空神经网络(Graph Spatiotemporal Neural Network,GSTNN)模型的多充电站负荷协同预测方法。定义时空信息图,描述充电站负荷之间的时空关系;构建时空特征提取网络,分别利用图卷积神经网络和门控序列卷积网络提取信息图的空间和时间维度信息,并使用长短期记忆网络(Long Short Term Memory Networks,LSTM)挖掘影响负荷预测的外部特征信息;融合提取的所有特征,进行负荷预测。算例结果表明,基于GSTNN模型的方法能充分考虑时空特征和外部特征的影响,协同多个充电站的负荷数据进行预测,并同时输出各充电站的预测结果,有效提高预测准确度,有助于电网稳定运行。 展开更多
关键词 新能源汽车 充电站负荷预测 图时空神经网络 长短期记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部