Adipose-derived mesenchymal stem cells (ADSCs) can be largely and easily obtained from a wide range of sources. Moreover, they have self-renewal ability, multi-differentiation potential, and an important role in imm...Adipose-derived mesenchymal stem cells (ADSCs) can be largely and easily obtained from a wide range of sources. Moreover, they have self-renewal ability, multi-differentiation potential, and an important role in immune regulation. They can secrete a variety of cytokines to regulate the in vivo micro-environment. Therefore, ADSCs are the ideal seed ceils for stem ceils application. This paper reviews the location, isolation, surface markers, proliferation, differentiation and other biological characteristics of ADSCs, as well as their secretory function and relative researches. ADSCs are expected to become excellent seed cells for cell therapy and tissue engineering through in-depth studies.展开更多
This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensio...This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.展开更多
Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cy...Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that the pore size was mainly in the range of 0.5 9.0 nm. Supercapacitors based on the sample AC-3 have low equivalent series resistanceb (ESR) and excellent power property.展开更多
With the increasingly promising role of nanomaterials in tissue engineering and regenerative medicine, the interaction between stem cells and nanoparticles has become a critical focus. The entry of nanoparticles into ...With the increasingly promising role of nanomaterials in tissue engineering and regenerative medicine, the interaction between stem cells and nanoparticles has become a critical focus. The entry of nanoparticles into cells has become a primary issue for effectively regulating the subsequent safety and performance of nanomaterials in vivo. Although the influence of nanomaterials on endocytosis has been extensively studied, reports on the influence of stem cells are rare.Moreover, the effect of nanomaterials on stem cells is also dependent upon the action mode. Unfortunately, the interaction between stem cells and assembled nanoparticles is often neglected. In this paper, we explore for the first time the uptake of γ-Fe2O3 nanoparticles by adipose-derived stem cells with different passage numbers. The results demonstrate that cellular viability decreases and cell senescence level increases with the extension of the passage number. We found the surface appearance of cellular membranes to become increasingly rough and uneven with increasing passage numbers. The iron content in the dissociative nanoparticles was also significantly reduced with increases in the passage number. However, we observed multiple-passaged stem cells cultured on assembled nanoparticles to have similarly low iron content levels. The mechanism may lie in the magnetic effect of γ-Fe2O3 nanoparticles resulting from the field-directed assembly. The results of this work will facilitate the understanding and translation of nanomaterials in the clinical application of stem cells.展开更多
Porcine mesenchymal stem cells in postnatal muscle have been demonstrated to differentiate into adipocytes. This increases adipocyte number and lipid accumulation, and is thought to be the origin of intramuscular fat....Porcine mesenchymal stem cells in postnatal muscle have been demonstrated to differentiate into adipocytes. This increases adipocyte number and lipid accumulation, and is thought to be the origin of intramuscular fat. In this study, the effects of myostatin and arginine on adipogenic differentiation in mesenchymal stem cells derived from porcine muscle (pMDSCs) were investigated in vitro. Intracellular triglyceride levels were reduced by exogenous myostatin and increased by arginine supplementation or myostatin antibody (P〈0.01). The inhibition of lipid accumulation by rnyostatin in pMDSCs was alleviated by arginine supplementation (P〈0.01). Expression patterns of adipogenic transcription factors showed that exogenous myostatin suppressed PPAR72 and aP2 expression (P〈0.01), while supplemental arginine or myostatin antibody promoted ADD1 expression (P〈0.01). Furthermore, compared with the addition of either myostatin protein or antibody alone, ADD1 and PPARδ expression were promoted by the combination of arginine and myostatin (P〈0.01), and arginine combined with myostatin antibody promoted the expression of ADD1, PPARδ, C/EBPα, PPARγ2 and LPL in pMDSCs (P〈0.05). These results suggest that myostatin inhibits adipogenesis in pMDSCs, and that this can be alleviated by arginine supplementation, at least in part, through promoting ADD1 and PPARδ expression.展开更多
Mesenchymal stem cells (MSCs) are considered as the developmental origin of multiple Uneage cells including osteocytes, adipocytes, and muscle cells. Previous studies demonstrated that the PH domain.containing prote...Mesenchymal stem cells (MSCs) are considered as the developmental origin of multiple Uneage cells including osteocytes, adipocytes, and muscle cells. Previous studies demonstrated that the PH domain.containing protein CKIP-1 plays an important role in the devel- opment of osteobiasts and cardiomyocytes. However, whether CKIP-1 is involved in the generation of adipocytes as weU as the MSC differentiation remains unknown. Here we show that CKIP-1 is a novel regulator of MSCs differentiating into adipocytes. MSCs derived from CKIP-l-deficient mice display enhanced adipogenesis upon induction. Further analysis showed that CKIP-1 interacts with the histone deacetylase HDAC1 in the nucleus and inhibits the transcription of CCAAT/enhancer-binding protein α (C/EBPcx), which is a crucial adipogenic transcription factor. Ectopic expression of CKI P-1 in a MSC-Uke cell line C3H/10T1/2 reduced the gener- ation of adipocytes due to suppression of adipogenic factors, including C/EBPα. Moreover, CKI P-l-deficient mice showed an increase in body weight and white adipose tissue gains when fed on a high-fat diet. Collectively, these results suggest that CKIP-1 is a novel inhibitor of MSC-originated adipogenesis by enhancing HDACl-associated repression of C/EBPα.展开更多
Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro, so as to lay a foundation for the cell-based transplantation therapy...Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro, so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs. Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution. ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1, CD44, CD45, CDI lb). To induce ADSCs to- wards a nucleus pulposus-like phenotype, ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-beta1 (TGF- β1) under hypoxia (2% O2), while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β 1. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carried out to evaluate phenotypic and biosynthetic activities in the process of differentiation. Meanwhile, Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells. Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro. The flow cytometry showed that ADSCs were positive for Sca-1 and CD44, negative for CD45 and CD11b. The results of RT-PCR manifested that the gene expressions of Sox-9, aggrecan and collagen Ⅱ, which were chondrocyte specific, were upregulated in medium containing TGF-β1 under hypoxia (2% O2). Likewise, gene expression of HIF-1 a, which was characteristics of in- tervertebral discs, was also upregulated. Simultaneously, Alcian blue staining exhibited the formation of many GAGs. Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs. Rat ADSCs can be differentiated into nucleus pulposus-like cells. ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of degenerated intervertebral discs using cell transolantation therarw.展开更多
基金Supported by The Fund from the Endangered Species Import and Export Management Office of the People’s Republic of China for the Management and Research of Endangered Wild Animals(201441314404)~~
文摘Adipose-derived mesenchymal stem cells (ADSCs) can be largely and easily obtained from a wide range of sources. Moreover, they have self-renewal ability, multi-differentiation potential, and an important role in immune regulation. They can secrete a variety of cytokines to regulate the in vivo micro-environment. Therefore, ADSCs are the ideal seed ceils for stem ceils application. This paper reviews the location, isolation, surface markers, proliferation, differentiation and other biological characteristics of ADSCs, as well as their secretory function and relative researches. ADSCs are expected to become excellent seed cells for cell therapy and tissue engineering through in-depth studies.
文摘This paper measured permeability of three-dimension braided preform by radial technology. The results show that principal permeability tensor coincided with their braiding axial direction. The software of one dimensional flow filling mold was designed using Visual C++ language. Filling time is predicted and validated. The result showed that the filling time of the mold centerline agrees with the prediction value. The filling time of the mould edge is shorter than that of the prediction. An actual plate of 3D braided preform/ modified polyarylacetylene composite is produced according to prediction value and validation analysis.
文摘Activated carbon (AC) was fabricated by using phenolic resin as carbon source, silica gel as inorganic template, KOH as activator. The samples were analyzed by N2 adsorption, scanning electron microscopy (SEM). Cyclic voltammetry and galvanostatic charge-discharge were used to characterize the electrochemical performance of the samples. The results showed that the pore size was mainly in the range of 0.5 9.0 nm. Supercapacitors based on the sample AC-3 have low equivalent series resistanceb (ESR) and excellent power property.
基金supported by the National Basic Research Program of China(2013CB733801)the National Key Research and Development Program of China(2017YFA0104301)thankful to the supports from the Fundamental Research Funds for the Central Universities
文摘With the increasingly promising role of nanomaterials in tissue engineering and regenerative medicine, the interaction between stem cells and nanoparticles has become a critical focus. The entry of nanoparticles into cells has become a primary issue for effectively regulating the subsequent safety and performance of nanomaterials in vivo. Although the influence of nanomaterials on endocytosis has been extensively studied, reports on the influence of stem cells are rare.Moreover, the effect of nanomaterials on stem cells is also dependent upon the action mode. Unfortunately, the interaction between stem cells and assembled nanoparticles is often neglected. In this paper, we explore for the first time the uptake of γ-Fe2O3 nanoparticles by adipose-derived stem cells with different passage numbers. The results demonstrate that cellular viability decreases and cell senescence level increases with the extension of the passage number. We found the surface appearance of cellular membranes to become increasingly rough and uneven with increasing passage numbers. The iron content in the dissociative nanoparticles was also significantly reduced with increases in the passage number. However, we observed multiple-passaged stem cells cultured on assembled nanoparticles to have similarly low iron content levels. The mechanism may lie in the magnetic effect of γ-Fe2O3 nanoparticles resulting from the field-directed assembly. The results of this work will facilitate the understanding and translation of nanomaterials in the clinical application of stem cells.
基金supported by the National Natural Science Foundation of China (Grant No.30972119)
文摘Porcine mesenchymal stem cells in postnatal muscle have been demonstrated to differentiate into adipocytes. This increases adipocyte number and lipid accumulation, and is thought to be the origin of intramuscular fat. In this study, the effects of myostatin and arginine on adipogenic differentiation in mesenchymal stem cells derived from porcine muscle (pMDSCs) were investigated in vitro. Intracellular triglyceride levels were reduced by exogenous myostatin and increased by arginine supplementation or myostatin antibody (P〈0.01). The inhibition of lipid accumulation by rnyostatin in pMDSCs was alleviated by arginine supplementation (P〈0.01). Expression patterns of adipogenic transcription factors showed that exogenous myostatin suppressed PPAR72 and aP2 expression (P〈0.01), while supplemental arginine or myostatin antibody promoted ADD1 expression (P〈0.01). Furthermore, compared with the addition of either myostatin protein or antibody alone, ADD1 and PPARδ expression were promoted by the combination of arginine and myostatin (P〈0.01), and arginine combined with myostatin antibody promoted the expression of ADD1, PPARδ, C/EBPα, PPARγ2 and LPL in pMDSCs (P〈0.05). These results suggest that myostatin inhibits adipogenesis in pMDSCs, and that this can be alleviated by arginine supplementation, at least in part, through promoting ADD1 and PPARδ expression.
文摘Mesenchymal stem cells (MSCs) are considered as the developmental origin of multiple Uneage cells including osteocytes, adipocytes, and muscle cells. Previous studies demonstrated that the PH domain.containing protein CKIP-1 plays an important role in the devel- opment of osteobiasts and cardiomyocytes. However, whether CKIP-1 is involved in the generation of adipocytes as weU as the MSC differentiation remains unknown. Here we show that CKIP-1 is a novel regulator of MSCs differentiating into adipocytes. MSCs derived from CKIP-l-deficient mice display enhanced adipogenesis upon induction. Further analysis showed that CKIP-1 interacts with the histone deacetylase HDAC1 in the nucleus and inhibits the transcription of CCAAT/enhancer-binding protein α (C/EBPcx), which is a crucial adipogenic transcription factor. Ectopic expression of CKI P-1 in a MSC-Uke cell line C3H/10T1/2 reduced the gener- ation of adipocytes due to suppression of adipogenic factors, including C/EBPα. Moreover, CKI P-l-deficient mice showed an increase in body weight and white adipose tissue gains when fed on a high-fat diet. Collectively, these results suggest that CKIP-1 is a novel inhibitor of MSC-originated adipogenesis by enhancing HDACl-associated repression of C/EBPα.
文摘Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro, so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs. Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution. ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1, CD44, CD45, CDI lb). To induce ADSCs to- wards a nucleus pulposus-like phenotype, ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-beta1 (TGF- β1) under hypoxia (2% O2), while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β 1. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carried out to evaluate phenotypic and biosynthetic activities in the process of differentiation. Meanwhile, Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells. Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro. The flow cytometry showed that ADSCs were positive for Sca-1 and CD44, negative for CD45 and CD11b. The results of RT-PCR manifested that the gene expressions of Sox-9, aggrecan and collagen Ⅱ, which were chondrocyte specific, were upregulated in medium containing TGF-β1 under hypoxia (2% O2). Likewise, gene expression of HIF-1 a, which was characteristics of in- tervertebral discs, was also upregulated. Simultaneously, Alcian blue staining exhibited the formation of many GAGs. Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs. Rat ADSCs can be differentiated into nucleus pulposus-like cells. ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of degenerated intervertebral discs using cell transolantation therarw.