In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoen...In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.展开更多
文摘In order to derive the linac photon spectrum accurately both the prior constrained model and the genetic algorithm GA are employed using the measured percentage depth dose PDD data and the Monte Carlo simulated monoenergetic PDDs where two steps are involved.First the spectrum is modeled as a prior analytical function with two parameters αand Ep optimized with the GA.Secondly the linac photon spectrum is modeled as a discretization constrained model optimized with the GA. The solved analytical function in the first step is used to generate initial solutions for the GA’s first run in this step.The method is applied to the Varian iX linear accelerator to derive the energy spectra of its 6 and 15 MV photon beams.The experimental results show that both the reconstructed spectrums and the derived PDDs with the proposed method are in good agreement with those calculated using the Monte Carlo simulation.