期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
马尔可夫决策过程和先验控制向量在弱约束自然语言生成中的应用 被引量:3
1
作者 刘奇 马娆 俞凯 《计算机学报》 EI CAS CSCD 北大核心 2022年第2期289-301,共13页
自然语言生成是目前非常重要且具有挑战性的一类人工智能任务.长短时记忆(Long Short-Term Memory,LSTM)语言模型是目前最为主流的自然语言生成模型.但是,LSTM语言模型的训练准则是词语级别的交叉熵,这会导致暴露偏差问题.此外,一般自... 自然语言生成是目前非常重要且具有挑战性的一类人工智能任务.长短时记忆(Long Short-Term Memory,LSTM)语言模型是目前最为主流的自然语言生成模型.但是,LSTM语言模型的训练准则是词语级别的交叉熵,这会导致暴露偏差问题.此外,一般自然语言生成任务的评测指标是序列级别的BLEU分数或者词错误率,这与训练使用的交叉熵准则也不匹配.在本文中,我们使用马尔可夫决策过程重定义了自然语言生成问题,并通过从训练数据中提取的先验控制向量来指导生成过程.先验控制向量可以视作是对序列空间的一种先验划分的抽象,通过在自然语言生成中引入先验控制向量,我们可以更好的约束自然语言生成的空间.再通过马尔可夫决策过程的定义,我们可以使用策略梯度算法来直接使用测试使用的BLEU分数来代替交叉熵训练LSTM网络.在多个数据集上的实验显示本文提出的方法相比于普通使用LSTM语言模型的基线系统在BLEU分数上有大约绝对2%~3%的提升. 展开更多
关键词 自然语言生成 马尔可夫决策过程 先验控制向量 策略梯度算法 深度强化学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部