期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于目标图像组合算法的改进YOLOv5模型
1
作者 张艳伟 周朝广 +1 位作者 黄一帆 曹菁菁 《中国工程机械学报》 北大核心 2023年第6期509-514,共6页
针对YOLOv5目标检测模型训练时间长、检测精度偏低问题,提出一种目标图像组合算法,考虑必要的图像背景及图像覆盖对目标图像进行分割,设计减少图像失真的重组策略提高单张训练集图像内目标个数,降低模型训练时长。改进先验框生成策略,... 针对YOLOv5目标检测模型训练时间长、检测精度偏低问题,提出一种目标图像组合算法,考虑必要的图像背景及图像覆盖对目标图像进行分割,设计减少图像失真的重组策略提高单张训练集图像内目标个数,降低模型训练时长。改进先验框生成策略,以绝对差值作为距离函数,对训练集目标边框的长和宽分别进行一维K-means聚类,提高先验框对训练集的适应度。提出多层并列卷积结构,对输入特征经过三层并列卷积后的输出进行融合,增强特征表征能力。以VOC2007和VOC2012训练集和验证集作为训练图像,采用目标图像组合算法,模型训练时间减少30%以上,改进先验框生成策略使先验框对训练集的适应度达到0.735。在VOC2007测试数据集上测试,改进YOLOv5模型平均准确率均值(mAP)由79.1%提升至80.3%。 展开更多
关键词 目标检测 YOLOv5 图像分割 多层并列卷积 先验框生成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部