SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surfa...SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).展开更多
Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation ...Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production.展开更多
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio...Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.展开更多
The aim of this paper is to present the preliminary experimental analysis results carried out on the commercial internal combustion engine set in a CHP (combined heat and power) mode, fueled by renewable hydrogen an...The aim of this paper is to present the preliminary experimental analysis results carried out on the commercial internal combustion engine set in a CHP (combined heat and power) mode, fueled by renewable hydrogen and methane mixtures. The hydrogen is produced by an alkaline electrolyser fed by a 5.8 kWp grid connected PV (photovoltaic) plant. The acceptance test conducted with hydrogen percentages ranging from 0%-10% has been carried out at partial load: 45 kW^l instead of the full power of 60 kWe~. In order to evaluate the CHP energy consumption and environmental performance (NOx and CO), the analysis was conducted for 240 h, using a portable flue gas analyser and two mass flow meters for hydrogen and methane. Without engine parameters optimization--relative equivalence ratio (2) and spark advance--increasing hydrogen addition rate, a slight enhancement in electrical efficiency occurs. Furthermore, due to the engine control system and lower blends LHV (lower heating value), the methane consumption decreases disproportionately to the hydrogen amount in the mixture. Finally, referring to standard operating condition, the environmental results show that using enrichment of 10%, running the engine with 18 degrees spark advance and 2 of 1.4, CO and NOx emissions are reduced by 6.3% and 27% respectively.展开更多
Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature ...Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature gradients and heat flow in such systems. Here, using a combination of spatially resolved Raman spectroscopy and transport measurements, we determine all the thermoelectric properties of single Se-doped InSb NWs and quantify the figure of merit ZT. The measured laser-induced heating in the NWs and associated electrical response are well described by a 1D heat equation model. Our method allows the determination of the thermal contact resistances at the source and drain electrodes of the NW, which are negligible in our system. The measured thermoelectric parameters of InSb NWs agree well with those obtained based on field-effect transistor Seebeck measurements.展开更多
A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-Ti...A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.展开更多
Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report...Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.展开更多
基金Projects(60806032,20975107) supported by the National Natural Science Foundation of ChinaProject(2009R10064) supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Education Ministry,China+2 种基金 Project(2009R10064) supported by "Qianjiang Talent Program"Projects(2009A610058,2009A610030) supported by the Ningbo Natural Science Foundation,ChinaProject supported by K.C.WONG Magna Fund in Ningbo University,China
文摘SnO2 nano particles with various Pd-doping concentrations were prepared using a template-free hydrothermal method.The effects of Pd doping on the crystal structure,morphology,microstructure,thermal stability and surface chemistry of these nano particles were characterized by transmission electron microscope,X-ray diffractometer and X-ray photoelectron spectroscope respectively.It was observed that Pd-doping had little effect on the grain sizes of the obtained SnO2 nano particles during the hydrothermal route.During thermal annealing,Pd-doping could restrain the growth of grain sizes below 500℃ while the grain growth was promoted when the temperature increased to above 700℃.XPS results revealed that Pd existed in three chemical states in the as-synthesized sample as Pd^0,Pd^2+ and Pd^4+,respectively.Pd^4+ was the main state which was responsible for improving the gas-sensing property.The optimal Pd-doping concentration for better gas-sensing property and thermal stability was 2.0%-2.5% (mole fraction).
文摘Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201225114)the Natural Science Foundation of Zhejiang Province (LY13B030006)
文摘Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.
文摘The aim of this paper is to present the preliminary experimental analysis results carried out on the commercial internal combustion engine set in a CHP (combined heat and power) mode, fueled by renewable hydrogen and methane mixtures. The hydrogen is produced by an alkaline electrolyser fed by a 5.8 kWp grid connected PV (photovoltaic) plant. The acceptance test conducted with hydrogen percentages ranging from 0%-10% has been carried out at partial load: 45 kW^l instead of the full power of 60 kWe~. In order to evaluate the CHP energy consumption and environmental performance (NOx and CO), the analysis was conducted for 240 h, using a portable flue gas analyser and two mass flow meters for hydrogen and methane. Without engine parameters optimization--relative equivalence ratio (2) and spark advance--increasing hydrogen addition rate, a slight enhancement in electrical efficiency occurs. Furthermore, due to the engine control system and lower blends LHV (lower heating value), the methane consumption decreases disproportionately to the hydrogen amount in the mixture. Finally, referring to standard operating condition, the environmental results show that using enrichment of 10%, running the engine with 18 degrees spark advance and 2 of 1.4, CO and NOx emissions are reduced by 6.3% and 27% respectively.
文摘Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature gradients and heat flow in such systems. Here, using a combination of spatially resolved Raman spectroscopy and transport measurements, we determine all the thermoelectric properties of single Se-doped InSb NWs and quantify the figure of merit ZT. The measured laser-induced heating in the NWs and associated electrical response are well described by a 1D heat equation model. Our method allows the determination of the thermal contact resistances at the source and drain electrodes of the NW, which are negligible in our system. The measured thermoelectric parameters of InSb NWs agree well with those obtained based on field-effect transistor Seebeck measurements.
基金supported by the National High Technology Research and Development Program of China (2009AA03Z217)the National Natural Science Foundation of China (90922028 and 51002053)
文摘A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.
基金supported by the National Natural Science Foundation of China (21875212)the Key Program of National Natural Science Foundation (51632008)+2 种基金the Major R&D Plan of Zhejiang Natural Science Foundation (LD18E020001)the National Key Research and Development Program (2016YFA0200204)the Fundamental Research Funds for the Central Universities。
文摘Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.