[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar ener...[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.展开更多
This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energ...This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.展开更多
Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueou...Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueous solution. Moreover, TiO2:Ho^3+ nanowires(HTNWs) were used as the photoanode in dye-sensitized solar cells(DSSCs) to investigate their photoelectric properties. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to characterize the morphology and structure of the material, respectively. The photofluorescence and ultraviolet-visible absorption spectra of HTNWs reveal a DC from the near and middle ultraviolet light to visible light which matches the strong absorbed region of the N719 dye. Compared with the pure TNW photoanode, HTNWs DC photoanodes show greater photovoltaic efficiency. The photovoltaic conversion efficiency(η) of the DSSCs with HTNWs photoanode doped with 4% Ho2O3(mass fraction) is two times that with pure TNW photoanode. This enhancement could be attributed to HTNWs which could extend the spectral response range of DSSCs to the near and middle ultraviolet region and increase the short-circuit current density(Jsc) of DSSCs, thus leading to the enhancement of photovoltaic conversion efficiency.展开更多
In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(ln,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wa...In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(ln,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.展开更多
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing...Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.展开更多
The TBS (telecommunications base stations) on remote sites in the northern part of Cameroon are mainly supplied by a system of two generating units. Only a few TBS located in the Waza and Benue National Parks are po...The TBS (telecommunications base stations) on remote sites in the northern part of Cameroon are mainly supplied by a system of two generating units. Only a few TBS located in the Waza and Benue National Parks are powered by a PV (photovoltaic) solar system to avoid any disturbance to wildlife. It is against this background that we decided to do a comparative study on these two systems. This study focuses on the reliability of electrical quantities, the environmental impact and the installation and operating costs of these two major systems namely the GU (generating unit) system comprising two generating units and the PV system. In conducting this study, we took a sample of TBS including those located in the Badjouma and Waza localities. After collecting data from mobile telephony operators, measurements of electrical quantities on the sites for twelve consecutive months and updating costs, their operation reveal indicators that are surprising, to say the least. Concerning the reliability index, the PV system is estimated at 99.9% as against 97.8% for the GU system. As for environmental impact, the mass of CO2 released by the GU system reached 1,707.5 tons in 25 years for a single TBS while the PV system produced no emissions. In addition to its contribution to climate change, the GU system pollutes its immediate environment through the spillage of waste and production of deafening noise. On the other hand, economic analysis shows mixed results. The GU system has a lower installation cost of $6,640 as against $174,550 for the PV system, whose investment cost is its main handicap. Regarding operating costs, the GU system peaks at $923,940 in 25 years while the PV system requires only $487,550 for the same duration.展开更多
The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obt...The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.展开更多
The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the d...The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.展开更多
This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar elect...This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar electricity delivered to grid is verified with the results from a computer simulation package (PVSYST) by adopting the installed component specifications, operation conditions, and weather data of the site. The results show high consistency between the values of energy delivered to the grid measured by the energy company and the energy estimated by system simulation. New system performance indicator is developed and called the optimum performance compliance ratio (PCR). It is a measure of the compliance of the output of the designed PV system with the output which would be produced by the same system with a solar tracker. This indicator provides system designers, contractors and energy providers with the actual capacity of the system that they can offer the end-users.展开更多
The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and pr...The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and product, according to the new energy and building technologies too. The main objective is the social and environmental sustainability with the reduction of fossil fuels and the greenhouse gas effect, pushing the use of renewable energies, in a new trend of land regeneration with sustainable buildings and settlement recovery. The energy crisis, mainly generated by the climate change, the air pollution, with consequent extinction of the species, reduction of the land and the work, the degradation and the environmental and seismic risk, focuses on the security and quality of construction systems, integrated use of clean resources. The methodologies aimed at integrating of energy-efficient and innovative building technologies in architecture, from design to management, to produce electric and thermal energy with active and passive properties, for a high-performance habitat. Therefore, the use of solar photovoltaic in the buildings, BIPV (Building Integrated Photovoltaic) with high-performance glass vision, efficient systems, intelligent materials, is integrated in architectures with the use of innovative construction systems, finally, technology of OPV (Organic Photovoltaic), multi-junction cells, the dye sensitized solar cells in the solid state, etc., and adoption of storage systems.展开更多
Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of s...Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.展开更多
Renewable energy options, including solar power, are becoming increasingly viable alternatives to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic (PV) technology is one type of ...Renewable energy options, including solar power, are becoming increasingly viable alternatives to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic (PV) technology is one type of solar energy technologies that has recently received substantial attention because it offers the possibility of providing clean power sources for buildings. The aim of this paper is to examine the economic viability of using solar PV within future residential buildings in the oil-rich Saudi Arabia. Strictly speaking, the prospects of using the PV in order to provide 10% of the electricity to be consumed in the houses, which are going to be built in Sandi Arabia over the period 2010-2025, are examined. The study reveals that significant economic and environmental benefits could be realized as a result of such an endeavor.展开更多
This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any s...This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.展开更多
The proposed research is aimed to define some BIPV (building integrated photovoltaics) paradigms for the refurbishment of historical contexts, by defining strategic criteria related to linguistic-architectural and t...The proposed research is aimed to define some BIPV (building integrated photovoltaics) paradigms for the refurbishment of historical contexts, by defining strategic criteria related to linguistic-architectural and technological-constructive aspects of solar systems (including case-studies in specific application contexts). This research could, once perfected and shared, be used within operative tools (guidelines, case studies, etc.) really applicable to common scale, e.g., in today's post-earthquake reconstruction in L'Aquila, for defining possible solar implementation possibilities in sensitive areas according to an innovative and sustainable method of intervention.展开更多
Solar energy is one of clean energies which has the most development and application prospect. And solar photovoltaic industry is the main force foe the development of new energy industry. This paper points out the ob...Solar energy is one of clean energies which has the most development and application prospect. And solar photovoltaic industry is the main force foe the development of new energy industry. This paper points out the obstacles which improves the international competitiveness of China' s photovoltaic industry based on the analysis of the three big indexes, namely the international competitiveness of photovoltaic industry IMS, TCD and RCI, and proposes the suggestion which enhances the competitive advantage of China' s solar photovoltaic industry.展开更多
Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demons...Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.展开更多
The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a sta...The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a stable voltage from an input supply (PV cells) that is higher and lower than the output, a high efficiency and minimum ripple DC-DC converter required in the system for residential power production. Buck-boost converters make it possible to efficiently convert a DC voltage to either a lower or higher voltages. Buck-boost converters are especially useful for PV maximum power tracking purposes, where the objective is to draw maximum possible power from solar panels at all times, regardless of the load. This paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck-boost DC-DC converter for the photovoltaic solar conversion system applicable to a (typical) single family home based on battery-based systems. The input voltage can typically change from (20 V) initially, down to (5 V), and provide a regulated voltage within the range of the battery (12 V). PLECS simulation results provide strong evidences about the high efficiency, minimum ripple voltage, high accuracy, and the usefulness of the system of the proposed converter when applied to either residential or solar home applications.展开更多
The electrical new technology is a new frontier science.This kind of technology, with the development and progress of society, makes the continuous development and innovation.It is the future development trend of elec...The electrical new technology is a new frontier science.This kind of technology, with the development and progress of society, makes the continuous development and innovation.It is the future development trend of electrical engineering system,which plays a very important role in technological innovation.The principle and theoretical support for the development of electrical new technology includes Bio- electro magnetics, plasma physics, electromagnetic fluid mechanics and gas discharge physics etc.In addition, under the application of permanent magnetic materials and other new materials, the electrical new technology and obtained further development also promote the development and application of electronic power supply, strong magnetic field technology, solar photovoltaic power generation, and superconducting power technology.This paper mainly analyzes the application of electrical new technology in electromechanical integration.展开更多
A PV (photovoltaic) solar panels exhibit non-linear current--voltage characteristics, and according to the MPT (maximum power transform) theory, it can produce maximum power at only one particular OP (operating p...A PV (photovoltaic) solar panels exhibit non-linear current--voltage characteristics, and according to the MPT (maximum power transform) theory, it can produce maximum power at only one particular OP (operating point); namely, when the source impedance matches with the load impedance, a match which cannot be guaranteed spontaneously. Furthermore, the MPP (maximum power point) changes with temperature and light intensity variations. Therefore, different algorithms have been developed for finding MPPT (maximum power point tracking) based on offline and online methods. Evaluating the performance of these algorithms for various PV systems operating under highly dynamic environments are essentials to ensure producing reliable, efficient, cost-effective and high performance systems. One possible approach for system evaluation is to use computer simulation. This paper addresses the use of Matlab software as a simulation tool for evaluating the performance of PV solar systems and finding the MPPT.展开更多
基金Supported by Shandong Meteorological Bureau Key Project (2010sdqxj105)~~
文摘[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.
文摘This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development.
基金Project(2012FU125X03)supported by Open Research Fund Project of National Engineering Research Center of SeafoodChina+3 种基金Project(2011–191)supported by the Key Science and Technology Platform of Liaoning Provincial Education DepartmentChinaProject(2010–354)supported by the Science and Technology Platform of DalianChina
文摘Ho^3+-doped titanium dioxide(TiO2:Ho^3+) downconversion(DC) nanowires were synthesized through a simple hydrothermal method followed by a subsequent calcination process after being immersed in Ho(NO3)3 aqueous solution. Moreover, TiO2:Ho^3+ nanowires(HTNWs) were used as the photoanode in dye-sensitized solar cells(DSSCs) to investigate their photoelectric properties. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to characterize the morphology and structure of the material, respectively. The photofluorescence and ultraviolet-visible absorption spectra of HTNWs reveal a DC from the near and middle ultraviolet light to visible light which matches the strong absorbed region of the N719 dye. Compared with the pure TNW photoanode, HTNWs DC photoanodes show greater photovoltaic efficiency. The photovoltaic conversion efficiency(η) of the DSSCs with HTNWs photoanode doped with 4% Ho2O3(mass fraction) is two times that with pure TNW photoanode. This enhancement could be attributed to HTNWs which could extend the spectral response range of DSSCs to the near and middle ultraviolet region and increase the short-circuit current density(Jsc) of DSSCs, thus leading to the enhancement of photovoltaic conversion efficiency.
基金funding by the German Federal Ministry for Economic Affairs and Energy (BMWi)the German Federal Ministry of Education and Research (BMBF)+1 种基金the German State of Baden-Württembergthe European Union
文摘In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(ln,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.
文摘Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.
文摘The TBS (telecommunications base stations) on remote sites in the northern part of Cameroon are mainly supplied by a system of two generating units. Only a few TBS located in the Waza and Benue National Parks are powered by a PV (photovoltaic) solar system to avoid any disturbance to wildlife. It is against this background that we decided to do a comparative study on these two systems. This study focuses on the reliability of electrical quantities, the environmental impact and the installation and operating costs of these two major systems namely the GU (generating unit) system comprising two generating units and the PV system. In conducting this study, we took a sample of TBS including those located in the Badjouma and Waza localities. After collecting data from mobile telephony operators, measurements of electrical quantities on the sites for twelve consecutive months and updating costs, their operation reveal indicators that are surprising, to say the least. Concerning the reliability index, the PV system is estimated at 99.9% as against 97.8% for the GU system. As for environmental impact, the mass of CO2 released by the GU system reached 1,707.5 tons in 25 years for a single TBS while the PV system produced no emissions. In addition to its contribution to climate change, the GU system pollutes its immediate environment through the spillage of waste and production of deafening noise. On the other hand, economic analysis shows mixed results. The GU system has a lower installation cost of $6,640 as against $174,550 for the PV system, whose investment cost is its main handicap. Regarding operating costs, the GU system peaks at $923,940 in 25 years while the PV system requires only $487,550 for the same duration.
文摘The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.
文摘The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.
文摘This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar electricity delivered to grid is verified with the results from a computer simulation package (PVSYST) by adopting the installed component specifications, operation conditions, and weather data of the site. The results show high consistency between the values of energy delivered to the grid measured by the energy company and the energy estimated by system simulation. New system performance indicator is developed and called the optimum performance compliance ratio (PCR). It is a measure of the compliance of the output of the designed PV system with the output which would be produced by the same system with a solar tracker. This indicator provides system designers, contractors and energy providers with the actual capacity of the system that they can offer the end-users.
文摘The performance of each type of building must meet all the needs and requests of new real estate markets. In fact, in the excellent architectures, the user can manage, with autonomy and flexibility, each system and product, according to the new energy and building technologies too. The main objective is the social and environmental sustainability with the reduction of fossil fuels and the greenhouse gas effect, pushing the use of renewable energies, in a new trend of land regeneration with sustainable buildings and settlement recovery. The energy crisis, mainly generated by the climate change, the air pollution, with consequent extinction of the species, reduction of the land and the work, the degradation and the environmental and seismic risk, focuses on the security and quality of construction systems, integrated use of clean resources. The methodologies aimed at integrating of energy-efficient and innovative building technologies in architecture, from design to management, to produce electric and thermal energy with active and passive properties, for a high-performance habitat. Therefore, the use of solar photovoltaic in the buildings, BIPV (Building Integrated Photovoltaic) with high-performance glass vision, efficient systems, intelligent materials, is integrated in architectures with the use of innovative construction systems, finally, technology of OPV (Organic Photovoltaic), multi-junction cells, the dye sensitized solar cells in the solid state, etc., and adoption of storage systems.
文摘Places of large potentials of sustainable energy production and places of large energy consumption are often very different and separated by large distances across the globe. This paper first discusses potentials of solar technology in terms of global availability using PV (photovoltaic) technology and actual energy production. Solar energy is widely under-used and one way to reduce this is to improve production in low-energy places with high demand: large cities. According to this option, about 40% of the electricity consumption in the built environment could be produced by solar PV systems and energy storage systems. This paper discusses conditions in the built environment and functional and design qualities enabling an increased diffusion of the technologies In a comparative analysis of PV technologies, the criteria taken into account encompass efficiency of the type of solar cell and commercial availability. Special attention is paid to the design features of different PV systems, like flexibility, colour and transparency that might help in their utilization as integrated in building material and ornaments in modem architecture. The same procedure is followed for electricity storage devices. The preliminary conclusion is that at present the freedom of design is largest for a combination of crystalline silicon PV cells and Li-ion batteries.
文摘Renewable energy options, including solar power, are becoming increasingly viable alternatives to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic (PV) technology is one type of solar energy technologies that has recently received substantial attention because it offers the possibility of providing clean power sources for buildings. The aim of this paper is to examine the economic viability of using solar PV within future residential buildings in the oil-rich Saudi Arabia. Strictly speaking, the prospects of using the PV in order to provide 10% of the electricity to be consumed in the houses, which are going to be built in Sandi Arabia over the period 2010-2025, are examined. The study reveals that significant economic and environmental benefits could be realized as a result of such an endeavor.
文摘This work proposes a 12 kW three-phase grid-connected single stage PWM DC-AC converter destined to process the energy provided by a photovoltaic array composed of 57 KC200GT PV modules with high power factor for any solar radiation. The PWM inverter modeling and the control strategy, using dqO transformation, are proposed in order to also allow the system operation as an active power filter, capable to compensate harmonic components and react power generated by the non-linear loads connected to the mains grid. An input voltage clamping technique is proposed to impose the photovoltaic operation on the maximum power point. Simulation and experimental results are presented to validate the proposed methodology for grid connected photovoltaic generation system.
文摘The proposed research is aimed to define some BIPV (building integrated photovoltaics) paradigms for the refurbishment of historical contexts, by defining strategic criteria related to linguistic-architectural and technological-constructive aspects of solar systems (including case-studies in specific application contexts). This research could, once perfected and shared, be used within operative tools (guidelines, case studies, etc.) really applicable to common scale, e.g., in today's post-earthquake reconstruction in L'Aquila, for defining possible solar implementation possibilities in sensitive areas according to an innovative and sustainable method of intervention.
文摘Solar energy is one of clean energies which has the most development and application prospect. And solar photovoltaic industry is the main force foe the development of new energy industry. This paper points out the obstacles which improves the international competitiveness of China' s photovoltaic industry based on the analysis of the three big indexes, namely the international competitiveness of photovoltaic industry IMS, TCD and RCI, and proposes the suggestion which enhances the competitive advantage of China' s solar photovoltaic industry.
基金China Southern Power Grid New Energy Experimental Project(No.03HC0901578)
文摘Building-integrated photovoltaic(BIPV) is an important application way of solar photovoltaic power. The electric vehicle(EV) charging and parking shed of BIPV is the regeneration energy intellectual integration demonstration application system collection of photovoltaic(PV) grid power,PV off- grid power,EV charging and parking shed,and any part of the functions and their combination will be engaged in practical application on demand. The paper describes the PV shed system structure and design in detail with the present of its actual photos. The shed is 50 m long and 5.5 m wide and capable of parking 18 cars. Under the control of system intellectual controller,the power produced by PV from sunlight will charge the parking EV car prior to charging the storage battery,charging the storage battery prior to grid power,grid power at last,and charge the EV by utility grid when it is a cloudy or rainy day.
文摘The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a stable voltage from an input supply (PV cells) that is higher and lower than the output, a high efficiency and minimum ripple DC-DC converter required in the system for residential power production. Buck-boost converters make it possible to efficiently convert a DC voltage to either a lower or higher voltages. Buck-boost converters are especially useful for PV maximum power tracking purposes, where the objective is to draw maximum possible power from solar panels at all times, regardless of the load. This paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck-boost DC-DC converter for the photovoltaic solar conversion system applicable to a (typical) single family home based on battery-based systems. The input voltage can typically change from (20 V) initially, down to (5 V), and provide a regulated voltage within the range of the battery (12 V). PLECS simulation results provide strong evidences about the high efficiency, minimum ripple voltage, high accuracy, and the usefulness of the system of the proposed converter when applied to either residential or solar home applications.
文摘The electrical new technology is a new frontier science.This kind of technology, with the development and progress of society, makes the continuous development and innovation.It is the future development trend of electrical engineering system,which plays a very important role in technological innovation.The principle and theoretical support for the development of electrical new technology includes Bio- electro magnetics, plasma physics, electromagnetic fluid mechanics and gas discharge physics etc.In addition, under the application of permanent magnetic materials and other new materials, the electrical new technology and obtained further development also promote the development and application of electronic power supply, strong magnetic field technology, solar photovoltaic power generation, and superconducting power technology.This paper mainly analyzes the application of electrical new technology in electromechanical integration.
文摘A PV (photovoltaic) solar panels exhibit non-linear current--voltage characteristics, and according to the MPT (maximum power transform) theory, it can produce maximum power at only one particular OP (operating point); namely, when the source impedance matches with the load impedance, a match which cannot be guaranteed spontaneously. Furthermore, the MPP (maximum power point) changes with temperature and light intensity variations. Therefore, different algorithms have been developed for finding MPPT (maximum power point tracking) based on offline and online methods. Evaluating the performance of these algorithms for various PV systems operating under highly dynamic environments are essentials to ensure producing reliable, efficient, cost-effective and high performance systems. One possible approach for system evaluation is to use computer simulation. This paper addresses the use of Matlab software as a simulation tool for evaluating the performance of PV solar systems and finding the MPPT.