利用传统无功优化手段,并结合光伏电源有功与无功功率输出能力,实现配电网有功-无功协调优化,以促进光伏消纳和降低损耗。首先,建立了混合整数非线性非凸模型,并运用二阶锥松弛技术将其转换为混合整数二阶锥规划(mixed integer second o...利用传统无功优化手段,并结合光伏电源有功与无功功率输出能力,实现配电网有功-无功协调优化,以促进光伏消纳和降低损耗。首先,建立了混合整数非线性非凸模型,并运用二阶锥松弛技术将其转换为混合整数二阶锥规划(mixed integer second order cone programming,MISOCP)模型;其次,利用奔德斯分解方法将MISOCP模型分解为主问题和子问题,两问题经奔德斯割交替迭代求解,提高了计算效率;最后,在改进的IEEE 33节点系统上进行算例分析,验证了光伏逆变器优化调度(optimal inverter dispatch,OID)策略的优越性以及所提方法的鲁棒性、精确性与快速性。展开更多
A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: o...A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.展开更多
文摘利用传统无功优化手段,并结合光伏电源有功与无功功率输出能力,实现配电网有功-无功协调优化,以促进光伏消纳和降低损耗。首先,建立了混合整数非线性非凸模型,并运用二阶锥松弛技术将其转换为混合整数二阶锥规划(mixed integer second order cone programming,MISOCP)模型;其次,利用奔德斯分解方法将MISOCP模型分解为主问题和子问题,两问题经奔德斯割交替迭代求解,提高了计算效率;最后,在改进的IEEE 33节点系统上进行算例分析,验证了光伏逆变器优化调度(optimal inverter dispatch,OID)策略的优越性以及所提方法的鲁棒性、精确性与快速性。
基金supported by the National Basic Research Program of China ("973" Program), (Grantt No. 2010CB227305)the CAS Solar Energy Action Program (Grant No. CX2090130012)
文摘A novel hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique is presented. In this system, a beam splitter is used to separate the concentrated solar radiation into two parts: one for the PV power generation and the other for thermal utility. The solar concentrator is a flat Fresnel-type concentrator with glass mirror reflectors. It can concentrate solar radiation onto solar cells with high uniformity, which is beneficial to improving the efficiency of solar cells. The thermal receiver is separated to the solar cells, and therefore, the thermal fluid can be heated to a relatively high temperature and does not affect the performance of solar cells. A dimensionless model was developed for the performance analysis of the concentrating system. The effects of the main parameters on the performance of the concentrator were analyzed. The beam splitter with coating materials Nb2O3 /SiO2 was designed by using the needle optimization technique, which can reflect about 71% of the undesired radiation for silicon cell(1.1m < 3m) to the thermal receiver for thermal utility. The performance of this CPV/T system was also theoretically analyzed.