This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, el...This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, electric fan, coffee maker, and radio. The paper presents the design method which is a short and correct method for the PV Hybrid system design. The result of the proposed design method is finally simulated by Homer software to optimize and prove the result. From the simulation, the output shows that the proposed method is proper for using to design the sizing of PV hybrid system. After the design, a PV hybrid system is constructed accordingly to the system design. A PV hybrid prototype is constructed as a small house which is specially constructed for demonstration of the proposed system. The PV hybrid system therefore has the size of PV 1.8 kWp, battery 20 kWh, and diesel generator 3 kW. After a long implementation of the system, the results of monitored data show that the designed PV hybrid system can deliver the power to the house continually 24 hours as it is originally designed. This can ensure that the proposed method of PV hybrid system design is correct and can be used for design the PV hybrid system for electrical utility in the remote area where has no an electric grid.展开更多
In recent years, PV (photovoltaic) systems have been installed rapidly around the world. However, there is often a delay in the practical application of fault detection in PV systems. In this study, the temperature ...In recent years, PV (photovoltaic) systems have been installed rapidly around the world. However, there is often a delay in the practical application of fault detection in PV systems. In this study, the temperature of BD (bypass diodes) mounted on PV modules was measured for simple and practical fault detection. The temperature of the BD of Module 31 was higher than other modules and a large current passed through one of the BDs. Measuring BD temperatures is easier than other conventional methods of fault detection. From the results of the rise in BD temperature under dark conditions, the increase in temperature increased linearly with increasing current flow. There is a proportional relationship between heat generated and the increasing temperature of the terminal box. The experimental results about surface temperature of the junction box in actual system operation suggested that the electric current through a BD in a terminal box can be known by measuring the surface temperature of the terminal box for PV module fault detection without a system shutdown. Moreover, we tried to evaluate temperature distribution of a terminal box using heat conduction equations. The evaluated results agreed well with the measured results.展开更多
The problem of collecting solar energy and increasing its efficiency was studied in this paper. It was discovered that a 3DPV (three-dimensional photovoltaic) structures can generate greater amounts of measured ener...The problem of collecting solar energy and increasing its efficiency was studied in this paper. It was discovered that a 3DPV (three-dimensional photovoltaic) structures can generate greater amounts of measured energy densities than stationary flat PV panels (rate: 2 to 20). It has been found that the same structures work better not only because they are made in 3D but because PV panels do not have linear dependency on geometry. It seems that the conversion efficiency depends on the process of absorption of the solar energy, too, or in other words on the E. Yablonovich limit. The findings suggest that the quantity of material of solar panels may be reduced to generate the same amount of electricity.展开更多
文摘This paper describes a design method and construction of a PV hybrid system for household electrification in remote area which has typical important electrical loads for daily life such as television, refrigerator, electric fan, coffee maker, and radio. The paper presents the design method which is a short and correct method for the PV Hybrid system design. The result of the proposed design method is finally simulated by Homer software to optimize and prove the result. From the simulation, the output shows that the proposed method is proper for using to design the sizing of PV hybrid system. After the design, a PV hybrid system is constructed accordingly to the system design. A PV hybrid prototype is constructed as a small house which is specially constructed for demonstration of the proposed system. The PV hybrid system therefore has the size of PV 1.8 kWp, battery 20 kWh, and diesel generator 3 kW. After a long implementation of the system, the results of monitored data show that the designed PV hybrid system can deliver the power to the house continually 24 hours as it is originally designed. This can ensure that the proposed method of PV hybrid system design is correct and can be used for design the PV hybrid system for electrical utility in the remote area where has no an electric grid.
文摘In recent years, PV (photovoltaic) systems have been installed rapidly around the world. However, there is often a delay in the practical application of fault detection in PV systems. In this study, the temperature of BD (bypass diodes) mounted on PV modules was measured for simple and practical fault detection. The temperature of the BD of Module 31 was higher than other modules and a large current passed through one of the BDs. Measuring BD temperatures is easier than other conventional methods of fault detection. From the results of the rise in BD temperature under dark conditions, the increase in temperature increased linearly with increasing current flow. There is a proportional relationship between heat generated and the increasing temperature of the terminal box. The experimental results about surface temperature of the junction box in actual system operation suggested that the electric current through a BD in a terminal box can be known by measuring the surface temperature of the terminal box for PV module fault detection without a system shutdown. Moreover, we tried to evaluate temperature distribution of a terminal box using heat conduction equations. The evaluated results agreed well with the measured results.
文摘The problem of collecting solar energy and increasing its efficiency was studied in this paper. It was discovered that a 3DPV (three-dimensional photovoltaic) structures can generate greater amounts of measured energy densities than stationary flat PV panels (rate: 2 to 20). It has been found that the same structures work better not only because they are made in 3D but because PV panels do not have linear dependency on geometry. It seems that the conversion efficiency depends on the process of absorption of the solar energy, too, or in other words on the E. Yablonovich limit. The findings suggest that the quantity of material of solar panels may be reduced to generate the same amount of electricity.