对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研...对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研究,在传统开路电压法(Open-Circuit Voltage,OCV)的基础上,结合输入电压纹波控制,提出了一种可实时最大功率点追踪(Maximum Power Point Tracking,MPPT)的预估算法。该预估算法根据能量源的输出特性,采用了分数开路电压法(Fractional Open-Circuit Voltage,FOCV),并根据纹波大小动态调节变换器的工作模式,实现阻抗匹配。为了尽可能减小因采样带来的能量损失,采用可片上全集成的较小的采样电容,并逐周期的进行开路电压采样和计算,实现了对源功率变化的高精度追踪。仿真结果表明,所提出的追踪算法能够实时监测能量源的状态,具有高的追踪速度和追踪精度,且采样时间仅需100 ns。能量源功率在1μW~10 mW范围内变化时,最短的追踪时间仅需4.37μs,追踪精度可达99.7%。展开更多
The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes fr...The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.展开更多
Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV ...Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology.展开更多
The aim of this paper is to present the preliminary experimental analysis results carried out on the commercial internal combustion engine set in a CHP (combined heat and power) mode, fueled by renewable hydrogen an...The aim of this paper is to present the preliminary experimental analysis results carried out on the commercial internal combustion engine set in a CHP (combined heat and power) mode, fueled by renewable hydrogen and methane mixtures. The hydrogen is produced by an alkaline electrolyser fed by a 5.8 kWp grid connected PV (photovoltaic) plant. The acceptance test conducted with hydrogen percentages ranging from 0%-10% has been carried out at partial load: 45 kW^l instead of the full power of 60 kWe~. In order to evaluate the CHP energy consumption and environmental performance (NOx and CO), the analysis was conducted for 240 h, using a portable flue gas analyser and two mass flow meters for hydrogen and methane. Without engine parameters optimization--relative equivalence ratio (2) and spark advance--increasing hydrogen addition rate, a slight enhancement in electrical efficiency occurs. Furthermore, due to the engine control system and lower blends LHV (lower heating value), the methane consumption decreases disproportionately to the hydrogen amount in the mixture. Finally, referring to standard operating condition, the environmental results show that using enrichment of 10%, running the engine with 18 degrees spark advance and 2 of 1.4, CO and NOx emissions are reduced by 6.3% and 27% respectively.展开更多
Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is si...Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.展开更多
This paper focuses on the implementation of a three-phase four-wire current-controlled Voltage Source Inverter (CC-VSI) as both power quality improvement and Photovoltaic (PV) energy extraction. For power quality ...This paper focuses on the implementation of a three-phase four-wire current-controlled Voltage Source Inverter (CC-VSI) as both power quality improvement and Photovoltaic (PV) energy extraction. For power quality improvement, the CC-VSI works as a grid current-controller shunt active power filter. Then, the PV array supported by the Hill- Climbing maximum power point tracking (MPPT) controller is coupled to the DC bus of the CC-VSI. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to the PV maximum power. From computer simulation results, the CC-VSI is able to compensate for the harmonic and reactive power as well as to extract the PV maximum power.展开更多
Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minor...Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for widescale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.展开更多
The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge s...The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge separation process in organic photovoltaic(OPV) cells. This article provides an overview of interface energetics at typical planar and mixed donor-acceptor heterostructures, perovskite/organic hybrid interfaces, and their contact interfaces with charge collection layers. The substrate effect on energy level offsets at organic heterostructures and the processes that control and limit the OPV operation are presented. Recent efforts on interface engineering with electrical doping are also discussed.展开更多
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhod...Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.展开更多
Researchers working in the field of photovoltaic are exploring novel materials for the efficient solar energy conversion.The prime objective of the discovery of every novel photovoltaic material is to achieve more ene...Researchers working in the field of photovoltaic are exploring novel materials for the efficient solar energy conversion.The prime objective of the discovery of every novel photovoltaic material is to achieve more energy yield with easy fabrication process and less production cost features.Perovskite solar cells (PSCs)delivering the highest efficiency in the passing years with different stoichiometry and fabrication modification have made this technology a potent candidate for future energy conversion materials.Till now,many studies have shown that the quality of active layer morphology,to a great extent,determines the performance of PSCs.The current and potential techniques of solvent engineering for good active layer morphology are mainly debated using primary solvent,co-solvent (Lewis acid-base adduct approach)and solvent additives.In this review,the dynamics of numerously reported solvents on the morphological characteristics of PSCs active layer are discussed in detail.The intention is to get a clear understanding of solvent engineering induced modifications on active layer morphology in PSC devices via different crystallization routes.At last,an attempt is made to draw a framework based on different solvent coordination properties to make it easy for screening the potent solvent contender for desired PSCs precursor for a better and feasible device.展开更多
Perovskite solar cells(PSCs)have attracted worldwide attention due to their high efficiency and low manufacturing cost.As the largest supplier of photovoltaic modules,China has made huge endeavors in the research on P...Perovskite solar cells(PSCs)have attracted worldwide attention due to their high efficiency and low manufacturing cost.As the largest supplier of photovoltaic modules,China has made huge endeavors in the research on PSCs.In 2019,Chinese research groups were still holding the top position for paper publications in the world.Both the efficiency and the stability of the device have been steadily increasing,pushing forward the commercialization of PSCs step by step.This review summarizes the highlights of China’s PSC research progress in 2019 and briefly introduces the development of PSC modules in industry.展开更多
Ternary Ⅰ–Ⅲ–Ⅵquantum dots(QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2nanocrystals(2–5 nm) were one-pot anchored on TiO2...Ternary Ⅰ–Ⅲ–Ⅵquantum dots(QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2nanocrystals(2–5 nm) were one-pot anchored on TiO2nanoparticles(TiO2@CGS) without any long ligand. The solar cell with TiO2@CuGaS2/N719 has a power conversion efficiency of7.4%, which is 23% higher than that of monosensitized dye solar cell. Anchoring CuGaS2 QDs on semiconductor nanoparticles to form QDs/dye co-sensitized solar cells is a promising and feasible approach to enhance light absorption,charge carrier generation as well as to facilitate electron injection comparing to conventional mono-dye sensitized solar cells.展开更多
文摘对于环境中存在的各种类型能量源,其往往具有不同的阻抗特性以及输出功率范围。为了提高能量收集系统的能量萃取能力,合理的接口电路设计是关键。基于此,通过对环境中光伏(Photovoltaic,PV)能量源微弱直流特性以及高效率收集和转化的研究,在传统开路电压法(Open-Circuit Voltage,OCV)的基础上,结合输入电压纹波控制,提出了一种可实时最大功率点追踪(Maximum Power Point Tracking,MPPT)的预估算法。该预估算法根据能量源的输出特性,采用了分数开路电压法(Fractional Open-Circuit Voltage,FOCV),并根据纹波大小动态调节变换器的工作模式,实现阻抗匹配。为了尽可能减小因采样带来的能量损失,采用可片上全集成的较小的采样电容,并逐周期的进行开路电压采样和计算,实现了对源功率变化的高精度追踪。仿真结果表明,所提出的追踪算法能够实时监测能量源的状态,具有高的追踪速度和追踪精度,且采样时间仅需100 ns。能量源功率在1μW~10 mW范围内变化时,最短的追踪时间仅需4.37μs,追踪精度可达99.7%。
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60736005 and No.60425101-1), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.60721001), the Provincial Program (No.9140A02060609DZ0208), the Program for New Century Excellent Talents in University (No.NCET- 06-0812), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No.GGRYJJ08P 05), and the Young Excellence Project of Sichuan (No.09ZQ026-074).
文摘The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.
文摘Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology.
文摘The aim of this paper is to present the preliminary experimental analysis results carried out on the commercial internal combustion engine set in a CHP (combined heat and power) mode, fueled by renewable hydrogen and methane mixtures. The hydrogen is produced by an alkaline electrolyser fed by a 5.8 kWp grid connected PV (photovoltaic) plant. The acceptance test conducted with hydrogen percentages ranging from 0%-10% has been carried out at partial load: 45 kW^l instead of the full power of 60 kWe~. In order to evaluate the CHP energy consumption and environmental performance (NOx and CO), the analysis was conducted for 240 h, using a portable flue gas analyser and two mass flow meters for hydrogen and methane. Without engine parameters optimization--relative equivalence ratio (2) and spark advance--increasing hydrogen addition rate, a slight enhancement in electrical efficiency occurs. Furthermore, due to the engine control system and lower blends LHV (lower heating value), the methane consumption decreases disproportionately to the hydrogen amount in the mixture. Finally, referring to standard operating condition, the environmental results show that using enrichment of 10%, running the engine with 18 degrees spark advance and 2 of 1.4, CO and NOx emissions are reduced by 6.3% and 27% respectively.
文摘Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.
文摘This paper focuses on the implementation of a three-phase four-wire current-controlled Voltage Source Inverter (CC-VSI) as both power quality improvement and Photovoltaic (PV) energy extraction. For power quality improvement, the CC-VSI works as a grid current-controller shunt active power filter. Then, the PV array supported by the Hill- Climbing maximum power point tracking (MPPT) controller is coupled to the DC bus of the CC-VSI. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to the PV maximum power. From computer simulation results, the CC-VSI is able to compensate for the harmonic and reactive power as well as to extract the PV maximum power.
文摘Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for widescale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.
基金supported by the National Basic Research Program of China (2014CB932600)the National Natural Science Foundation of China (91433116, 11474214)+2 种基金Jiangsu Science and Technology Department (BK20140053)Bureau of Science and Technology of Suzhou Municipality (SYG201525, ZXG201422)the project of the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
文摘The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge separation process in organic photovoltaic(OPV) cells. This article provides an overview of interface energetics at typical planar and mixed donor-acceptor heterostructures, perovskite/organic hybrid interfaces, and their contact interfaces with charge collection layers. The substrate effect on energy level offsets at organic heterostructures and the processes that control and limit the OPV operation are presented. Recent efforts on interface engineering with electrical doping are also discussed.
基金supported by the Ministry of Science and Technology(2014CB643502,2016YFA0200200)the Natural Science Foundation of China(21404060,51422304,91433101)
文摘Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.
基金supported by the National Key Research and Development Program of China (2016YFA0202400)the 111 project (B16016)the National Natural Science Foundation of China (51572080, 51702096, and U1705256)
文摘Researchers working in the field of photovoltaic are exploring novel materials for the efficient solar energy conversion.The prime objective of the discovery of every novel photovoltaic material is to achieve more energy yield with easy fabrication process and less production cost features.Perovskite solar cells (PSCs)delivering the highest efficiency in the passing years with different stoichiometry and fabrication modification have made this technology a potent candidate for future energy conversion materials.Till now,many studies have shown that the quality of active layer morphology,to a great extent,determines the performance of PSCs.The current and potential techniques of solvent engineering for good active layer morphology are mainly debated using primary solvent,co-solvent (Lewis acid-base adduct approach)and solvent additives.In this review,the dynamics of numerously reported solvents on the morphological characteristics of PSCs active layer are discussed in detail.The intention is to get a clear understanding of solvent engineering induced modifications on active layer morphology in PSC devices via different crystallization routes.At last,an attempt is made to draw a framework based on different solvent coordination properties to make it easy for screening the potent solvent contender for desired PSCs precursor for a better and feasible device.
基金supported by the National Natural Science Foundation of China(11834011,11674219)。
文摘Perovskite solar cells(PSCs)have attracted worldwide attention due to their high efficiency and low manufacturing cost.As the largest supplier of photovoltaic modules,China has made huge endeavors in the research on PSCs.In 2019,Chinese research groups were still holding the top position for paper publications in the world.Both the efficiency and the stability of the device have been steadily increasing,pushing forward the commercialization of PSCs step by step.This review summarizes the highlights of China’s PSC research progress in 2019 and briefly introduces the development of PSC modules in industry.
基金the financial support from the National Key Research and Development Program of China(2016YFA0201001)the National Natural Science Foundation of China(11627801,51102172 and 11772207)+7 种基金Science and Technology Plan of Shenzhen City(JCYJ20160331191436180)the Leading Talents of Guangdong Province Program(2016LJ06C372)the Natural ScienceFoundation for Outstanding Young Researcher in Hebei Province(E2016210093)the Key Program of Educational Commission of Hebei Province of China(ZD2016022)the Youth Top-notch Talents Supporting Plan of Hebei Provincethe Graduate Innovation Foundation of Shijiazhuang Tiedao UniversityHebei Provincial Key Laboratory of Traffic Engineering materialsHebei Key Discipline Construction Project
文摘Ternary Ⅰ–Ⅲ–Ⅵquantum dots(QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2nanocrystals(2–5 nm) were one-pot anchored on TiO2nanoparticles(TiO2@CGS) without any long ligand. The solar cell with TiO2@CuGaS2/N719 has a power conversion efficiency of7.4%, which is 23% higher than that of monosensitized dye solar cell. Anchoring CuGaS2 QDs on semiconductor nanoparticles to form QDs/dye co-sensitized solar cells is a promising and feasible approach to enhance light absorption,charge carrier generation as well as to facilitate electron injection comparing to conventional mono-dye sensitized solar cells.