精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测...精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。展开更多
为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光...为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。展开更多
文摘精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。
文摘为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。