期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Leaky-ESN的光伏发电输出功率预测 被引量:5
1
作者 胡海峰 伦淑娴 《电子设计工程》 2016年第17期15-17,共3页
利用PVSYSTEM系统产生的数据分析了光伏发电系统输出功率的主要影响因素,并且建立了基于泄露积分型回声状态网(Leaky-ESN)对光伏发电系统输出功率的预测模型。Leaky-ESN比起其他的神经网络具有训练方法简单,预测精度高的优点,因此将光... 利用PVSYSTEM系统产生的数据分析了光伏发电系统输出功率的主要影响因素,并且建立了基于泄露积分型回声状态网(Leaky-ESN)对光伏发电系统输出功率的预测模型。Leaky-ESN比起其他的神经网络具有训练方法简单,预测精度高的优点,因此将光伏发电影响因素的历史数据作为输入和训练样本,对模型输出功率进行预测。仿真结果表明,Leaky-ESN具有很高的预测精度。 展开更多
关键词 泄露积分型回声状态网 发电影响因素 历史数据 光伏输出功率预测
下载PDF
基于改进麻雀搜索算法的光伏功率短期预测 被引量:5
2
作者 李争 罗晓瑞 +3 位作者 张杰 曹欣 杜深慧 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期284-289,共6页
为提高光伏输出功率预测精度、保证电网的优化调度和稳定运行,提出一种改进麻雀搜索算法(SSA)的光伏输出功率预测模型。首先,对实验平台收集到的历史数据进行分析,得到关键气候影响因素;然后,用经验模态分解和主成分分析法对数据进行维... 为提高光伏输出功率预测精度、保证电网的优化调度和稳定运行,提出一种改进麻雀搜索算法(SSA)的光伏输出功率预测模型。首先,对实验平台收集到的历史数据进行分析,得到关键气候影响因素;然后,用经验模态分解和主成分分析法对数据进行维稳和降维处理;并建立改进麻雀搜索算法的BP神经网络预测模型;最后,进行实例验证。结果表明,该预测模型在敛散精度方面有所提升。 展开更多
关键词 经验模态分解 主成分分析 改进麻雀搜索算法 输出功率短期预测
下载PDF
基于小波分析和集成学习的光伏输出功率短期预测 被引量:11
3
作者 孙永辉 范磊 +3 位作者 卫志农 李慧杰 Kwok W Cheung 孙国强 《电力系统及其自动化学报》 CSCD 北大核心 2016年第4期6-11,30,共7页
针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋... 针对光伏输出功率的预测精度影响系统安全调度和稳定运行的问题,该文建立了基于小波分析和集成学习的光伏输出功率短期预测模型。考虑到光伏输出功率的波动性与随机性,引入小波分析将数据分解成趋势项和随机项,并分别对其建模。其中,趋势项采用SVM算法,随机项采用BP算法进行预测处理;再考虑到随机项的非平稳性和BP算法的固有缺点,为提高预测精度,将集成学习引入随机项的预测模型。大量测试结果表明,基于小波分析和集成学习的短期预测模型的预测精度优于现有几种模型。 展开更多
关键词 小波分析 集成学习 BP神经网络 支持向量机 输出功率短期预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部