Increasing the spectral efficiency and per channel data rate have historically been shown to be the most cost-effective method to meet the need of ever growing capacity demand in the core network. In this paper we rev...Increasing the spectral efficiency and per channel data rate have historically been shown to be the most cost-effective method to meet the need of ever growing capacity demand in the core network. In this paper we review recent progress in high-speed and high-spectral-efficient optical transmission technology. We discuss spectrally efficient modulation and detection technologies that have been experimentally explored for future 100-Gb/s and above optical transmission system. Emerging methods aiming at extending system reach for noise and nonlinearity-stressed high spectral efficiency optical transmission systems have also been reviewed. We show that spectrallyefficient multilevel coding coupled with polarization multiplexing and digital coherent detection has the potential to enable 400Gb/s per channel WDM system operating with existing 50GHzspaced WDM infrastructure at a spectral efficiency of 8b/s/Hz.展开更多
Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper c...Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper cone angle is given.By the scalar wave equation and Gaussian approximation,transmission properties of the two kinds of tapered fibers are analyzed,the power losses caused by taper cone angle and by the bending are also calculated.From the experiments and theoretical analysis,it could come to a conclusion that the wider the taper cone angle is,the higher the transmission efficiency will be.展开更多
Inline characterization for fabrication of silicon wafer PV (photovoltaic) devices may be used to optimize device efficiencies, reduce their performance variance, and their cost of production. In this article, the f...Inline characterization for fabrication of silicon wafer PV (photovoltaic) devices may be used to optimize device efficiencies, reduce their performance variance, and their cost of production. In this article, the frozen in strain from a variety of extended defects in silicon is shown to effect the polarization of light transmitted through a silicon substrate due to the photo-elastic effect. Transmission polarimetry on pre-fabricated silicon substrates may be used for identification of extended defects in the materials using a polarization analysis instrument. Instrumentation is proposed for detection of defects in raw silicon wafers for applications like raw silicon wafer sorting, scanning silicon bricks, and inline inspection prior to solar cell metallization. Such analysis may assist with gettering of silicon solar cells, may be implemented in the sorting and rejection procedures in PV device fabrication, and in general shows advantages for detection of defects in silicon wafer solar cell materials and devices.展开更多
Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent ...Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.展开更多
For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivi...For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.展开更多
The paper studies a kind of improved photonic crystal fiber gratings fabricated by CO2 laser heating method. The effective refractive index of cladding induced by periodic air hole deformation is computed using multip...The paper studies a kind of improved photonic crystal fiber gratings fabricated by CO2 laser heating method. The effective refractive index of cladding induced by periodic air hole deformation is computed using multipole method, and the rela-tionship between the effective refractive index and the collapse of air-holes is discussed, thereby the modulation expression of effective refractive index is obtained. The grating transmission characteristics are simulated. The results indicate that with the diameter of air-holes increasing from 3.3 ~m to 3.7 μm, the resonance wavelength shows blue-shift, the resonance peak intensifies, and the bandwidth becomes narrow. As the collapse degree of cladding enhances, the resonance wave- length shows red-shift, the transmission increases, and the bandwidth tends to narrow.展开更多
2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD), as the most commonly used hole transport material(HTM), plays a significant role in the normal structured(n-i-p) high-efficiency ...2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD), as the most commonly used hole transport material(HTM), plays a significant role in the normal structured(n-i-p) high-efficiency perovskite solar cells(PSCs). In general, it is prepared by a halogen solvent(chlorobenzene, CBZ) and needs an ion dopant(lithium bis(trifluoromethanesulfonyl)imide, Li-TFSI) to improve its conductivity and hole mobility. However, such a halogen solvent is not environmentally friendly and the widely used LiTFSI dopant would affect the stability of PSCs. Herein, we develop a non-halogen solvent-tetrahydrofuran(THF)-prepared spiro-OMeTAD solution with a new p-type dopant,potassium bis(fluorosulfonyl)imide(K-FSI), to apply into PSCs. By this strategy, high-hole-mobility spiro-OMeTAD film is achieved. Meanwhile, the potassium ions introduced by diffusion into perovskite surface passivate the interfacial defects. Therefore, a hysteresis-free champion PSC with an efficiency of 21.02% is obtained, along with significantly improved stability against illumination and ambient conditions. This work provides a new strategy for HTMs toward hysteresis-free high-efficiency and stable PSCs by substituting dopants.展开更多
文摘Increasing the spectral efficiency and per channel data rate have historically been shown to be the most cost-effective method to meet the need of ever growing capacity demand in the core network. In this paper we review recent progress in high-speed and high-spectral-efficient optical transmission technology. We discuss spectrally efficient modulation and detection technologies that have been experimentally explored for future 100-Gb/s and above optical transmission system. Emerging methods aiming at extending system reach for noise and nonlinearity-stressed high spectral efficiency optical transmission systems have also been reviewed. We show that spectrallyefficient multilevel coding coupled with polarization multiplexing and digital coherent detection has the potential to enable 400Gb/s per channel WDM system operating with existing 50GHzspaced WDM infrastructure at a spectral efficiency of 8b/s/Hz.
文摘Transmission properties of tapered fiber including right cone fiber and bend optical fiber are discussed.The transmission efficiency of the tapered fiber is measured.The curve of transmission efficiency versus taper cone angle is given.By the scalar wave equation and Gaussian approximation,transmission properties of the two kinds of tapered fibers are analyzed,the power losses caused by taper cone angle and by the bending are also calculated.From the experiments and theoretical analysis,it could come to a conclusion that the wider the taper cone angle is,the higher the transmission efficiency will be.
文摘Inline characterization for fabrication of silicon wafer PV (photovoltaic) devices may be used to optimize device efficiencies, reduce their performance variance, and their cost of production. In this article, the frozen in strain from a variety of extended defects in silicon is shown to effect the polarization of light transmitted through a silicon substrate due to the photo-elastic effect. Transmission polarimetry on pre-fabricated silicon substrates may be used for identification of extended defects in the materials using a polarization analysis instrument. Instrumentation is proposed for detection of defects in raw silicon wafers for applications like raw silicon wafer sorting, scanning silicon bricks, and inline inspection prior to solar cell metallization. Such analysis may assist with gettering of silicon solar cells, may be implemented in the sorting and rejection procedures in PV device fabrication, and in general shows advantages for detection of defects in silicon wafer solar cell materials and devices.
基金supported by the National Natural Science Foundation of China(62004074,51727809)the Science and Technology Department of Hubei Province(2019AAA063,2020BAA016)。
文摘Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.
基金mostly supported by the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDB-SSW-SLH006)+1 种基金the National Natural Science Foundation of China(61674141,51972300,21975245)the support from the Hundred Talents Program(Chinese Academy of Sciences)。
文摘For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.
基金supported by the National Basic Research Pragram of China (973 Pragram) (No.2010CB327801)the Natural Science Foundation of Hebei Province (No.F2010001286)the Applied Basic Research Programs of Hebei Province (No.10963526D)
文摘The paper studies a kind of improved photonic crystal fiber gratings fabricated by CO2 laser heating method. The effective refractive index of cladding induced by periodic air hole deformation is computed using multipole method, and the rela-tionship between the effective refractive index and the collapse of air-holes is discussed, thereby the modulation expression of effective refractive index is obtained. The grating transmission characteristics are simulated. The results indicate that with the diameter of air-holes increasing from 3.3 ~m to 3.7 μm, the resonance wavelength shows blue-shift, the resonance peak intensifies, and the bandwidth becomes narrow. As the collapse degree of cladding enhances, the resonance wave- length shows red-shift, the transmission increases, and the bandwidth tends to narrow.
基金financially supported by the National Key Research and Development Plan (2019YFE0107200 and 2017YFE0131900)the National Natural Science Foundation of China (21875178 and 91963209)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHD2020-001 and XHT2020-005)。
文摘2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD), as the most commonly used hole transport material(HTM), plays a significant role in the normal structured(n-i-p) high-efficiency perovskite solar cells(PSCs). In general, it is prepared by a halogen solvent(chlorobenzene, CBZ) and needs an ion dopant(lithium bis(trifluoromethanesulfonyl)imide, Li-TFSI) to improve its conductivity and hole mobility. However, such a halogen solvent is not environmentally friendly and the widely used LiTFSI dopant would affect the stability of PSCs. Herein, we develop a non-halogen solvent-tetrahydrofuran(THF)-prepared spiro-OMeTAD solution with a new p-type dopant,potassium bis(fluorosulfonyl)imide(K-FSI), to apply into PSCs. By this strategy, high-hole-mobility spiro-OMeTAD film is achieved. Meanwhile, the potassium ions introduced by diffusion into perovskite surface passivate the interfacial defects. Therefore, a hysteresis-free champion PSC with an efficiency of 21.02% is obtained, along with significantly improved stability against illumination and ambient conditions. This work provides a new strategy for HTMs toward hysteresis-free high-efficiency and stable PSCs by substituting dopants.