Through analyzing theoretically the temperature effect of the optical-fiber Raman backscattering,a distributed temperature sensor is designed based on the single-mode fiber. Demodulation methods of temperature transdu...Through analyzing theoretically the temperature effect of the optical-fiber Raman backscattering,a distributed temperature sensor is designed based on the single-mode fiber. Demodulation methods of temperature transduction are compared,and then the demodulation method using the ratio of the anti-Stokes and the Stokes Raman backscattering intensity is adopted. Both the hardware composition and the software realization of the system are introduced in detail. The experiment shows that the distinguishing ability of the temperature and that of the space are 1℃ and 2m,respectively,and that the system response time is about 180 s with a sensing range of 5km and with a temperature measurement range of 0-100℃.展开更多
Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative...Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative transfer model is used to simulate the limb scattering radiation received by the SCIAMACHY instrument,and an optimal estimation algorithm is used to calculate the aerosol extinction profiles.Sensitivity analyses are performed to investigate the impact of the surface albedo on the accuracy of the retrieved aerosol extinction profiles in the northern midlatitudes.It is found that the errors resulting from the bias of the assumed surface albedo in the retrieval are generally below 6%.The retrieved SCIAMACHY aerosol extinction profiles are compared with corresponding Stratospheric Aerosol and Gas Experiment(SAGE) II measurements,and the results indicate that for the zonal mean profiles,the SCIAMACHY retrievals show good agreement with SAGE II measurements,with the absolute differences being less than 2.3×10-5 km-1 from 14–25 km,and less than 5.9×10-6 km-1 from 25–35 km;and the relative differences being within 20% over the latitude range of 14–35 km.展开更多
In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutio...In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrodinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.展开更多
基金Shandong Province Natural Science Foundation (No.Z2006G06)The Excellent Youth Scientist Award Foundation of Shandong Province (No.2006 BS 01001)
文摘Through analyzing theoretically the temperature effect of the optical-fiber Raman backscattering,a distributed temperature sensor is designed based on the single-mode fiber. Demodulation methods of temperature transduction are compared,and then the demodulation method using the ratio of the anti-Stokes and the Stokes Raman backscattering intensity is adopted. Both the hardware composition and the software realization of the system are introduced in detail. The experiment shows that the distinguishing ability of the temperature and that of the space are 1℃ and 2m,respectively,and that the system response time is about 180 s with a sensing range of 5km and with a temperature measurement range of 0-100℃.
基金funded by the National Natural Science Foundation of China (Grant No.41275047)the National Basic Research Program of China (Grant No.2013CB955801)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA05100300)
文摘Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative transfer model is used to simulate the limb scattering radiation received by the SCIAMACHY instrument,and an optimal estimation algorithm is used to calculate the aerosol extinction profiles.Sensitivity analyses are performed to investigate the impact of the surface albedo on the accuracy of the retrieved aerosol extinction profiles in the northern midlatitudes.It is found that the errors resulting from the bias of the assumed surface albedo in the retrieval are generally below 6%.The retrieved SCIAMACHY aerosol extinction profiles are compared with corresponding Stratospheric Aerosol and Gas Experiment(SAGE) II measurements,and the results indicate that for the zonal mean profiles,the SCIAMACHY retrievals show good agreement with SAGE II measurements,with the absolute differences being less than 2.3×10-5 km-1 from 14–25 km,and less than 5.9×10-6 km-1 from 25–35 km;and the relative differences being within 20% over the latitude range of 14–35 km.
基金Supported by the National Natural Science Foundation of China under Grant No.61671227the Natural Science Foundation of Shandong Province under Grant No.ZR2014AM018
文摘In birefringent optical fibers, the propagation of femtosecond soliton pulses is described by coupled higherorder nonlinear Schrodinger equations. In this paper, we will investigate the bright and dark soliton solutions of(2+1)-dimensional coupled higher-order nonlinear Schrodinger equations, with the aid of symbolic computation and the Hirota method. On the basis of soliton solutions, we test and discuss the interactions graphically between the solitons in the x-z, x-t, and z-t planes.