以连续流产氢为目标,采用高透光性弥散光纤作为导光介质和光合细菌吸附成膜的载体,构造了环流型光纤生物膜制氢反应器。在实验研究的基础上,根据传质原理和Monod生化反应动力学建立了描述连续流反应器中底物传输和降解的二维数学模型。...以连续流产氢为目标,采用高透光性弥散光纤作为导光介质和光合细菌吸附成膜的载体,构造了环流型光纤生物膜制氢反应器。在实验研究的基础上,根据传质原理和Monod生化反应动力学建立了描述连续流反应器中底物传输和降解的二维数学模型。以强化底物传输和提高底物降解效率为目标,对反应器的实际操作参数进行了优化。研究结果表明,反应器的底物传输特性对反应器的底物降解效率有显著影响。反应器的底物降解效率随进口底物质量浓度的增加呈现先增大后减小的趋势。反应器的底物降解效率随流速的增加呈现逐渐减小的趋势。当反应器的进口底物质量浓度为10 g/L,流速为100 m L/h时,底物消耗速率最大,底物降解效率达到43.5%。合理地控制反应器中的底物传输使得生物膜区域具有适合的底物质量浓度分布,是维持反应器较高底物降解效率的有效途径。展开更多
文摘以连续流产氢为目标,采用高透光性弥散光纤作为导光介质和光合细菌吸附成膜的载体,构造了环流型光纤生物膜制氢反应器。在实验研究的基础上,根据传质原理和Monod生化反应动力学建立了描述连续流反应器中底物传输和降解的二维数学模型。以强化底物传输和提高底物降解效率为目标,对反应器的实际操作参数进行了优化。研究结果表明,反应器的底物传输特性对反应器的底物降解效率有显著影响。反应器的底物降解效率随进口底物质量浓度的增加呈现先增大后减小的趋势。反应器的底物降解效率随流速的增加呈现逐渐减小的趋势。当反应器的进口底物质量浓度为10 g/L,流速为100 m L/h时,底物消耗速率最大,底物降解效率达到43.5%。合理地控制反应器中的底物传输使得生物膜区域具有适合的底物质量浓度分布,是维持反应器较高底物降解效率的有效途径。