The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical ...The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.展开更多
The coordination reactions of Cu(Ⅱ) and Ni(Ⅱ) with acid alizarine blue B (AABB) in the presence of cetyltrimethylammonium bromide (CTAB) micelle were investigated using the microsurface adsorptionspectral co...The coordination reactions of Cu(Ⅱ) and Ni(Ⅱ) with acid alizarine blue B (AABB) in the presence of cetyltrimethylammonium bromide (CTAB) micelle were investigated using the microsurface adsorptionspectral correction technique (MSASC). The aggregation of AABB on CTAB followed the Langmuir isothermal adsorption law. The enrichment of AABB on CTAB sensitized the complexation between Cu(Ⅱ) or Ni(Ⅱ)and AABB. The binding ratio of AABB to CTAB was 1:2.5, and monomeric aggregate, AABB2CTAB5, was formed with an adsorption constant of 5.95×10^5 at 20 ℃ or 2.48×10^5 at 40 ℃. In the ternary complexation, the ratio of AABB:Cu and AABB:Ni were 1:1 and 1:2.5, respectively. Two types of aggregates, Cu2.AABB2·CTAB80 and Ni5.AABB2.CTAB80, were formed.展开更多
The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl...The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl group (-OH) of TiO2 microspheres surface and the amino group (-NH2) of CuAPTPP reacted respectively with the active -NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2 that was confirmed by FT-IR spectra. The CuAPTPP-TDI-TiO2 microspheres were characterized with UV-visible, elemental analysis, XRD, SEM, and UV-Vis diffuse reflectance spectra. The effect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed, and the optimal molar ratio of TDI:TiO2 was established. The photocatalytic activity of CuAPTPP- TDI-TiO2 was evaluated using the photocatalytic degradation of methylene blue (MB) under visible-light irradiation. The results showed that, TDI, as a bond unit, was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2 microspheres, and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation. The degradation rate of 20 mg/L MB could reach 98.7% under Xe- lamp (150 W) irradiation in 120 rain. The degradation of MB followed the first-order reaction model under visible light irradiation, and the rate constant of 5.1× 10^-2 min-1 and the half- life of 11.3 min were achieved. And the new photocatalyst can be recycled for 4 times, remaining 90.0% MB degradation rate.展开更多
A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious m...A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field.展开更多
The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often as...The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.展开更多
We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,...We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,36,72,108,144 and 180 J/m2),and thereafter subjected to PAR,darkness,or red or blue light during a 2-h repair stage,each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers(CPDs),chlorophyll a(Chl a),phycoerythrin,and UV-B-absorbing mycosporinelike amino acids(MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation(36 and 72 J/m 2) promoted the growth of C. ocellatus; however,increased UV-B radiation gradually reduced the C. ocellatus growth(greater than 72 J/m2). The MAAs(palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition,photorepair was inhibited by red light,so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase,greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore,PAR,red light,and blue light play different roles during the repair processes for damage induced by UV-B radiation.展开更多
The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1...The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast.展开更多
Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of las...Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower.展开更多
The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible a...The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible approach is presented to repair TA15 forgings by employing Ti6Al4V-xTA15 mixed powders in this paper.The performance compatibility of Ti6Al4V-xTA15 powders from the aspects of microhardness,tensile property,heat capacity,thermal expansion coefficient and corrosion resistance with the TA15 forgings was fully investigated.The primaryαlaths were refined and the volume fraction of the secondaryαphase was increased by increasing the mass fraction of TA15 in the mixed Ti6Al4V-xTA15 powders,leading to varied performances.In conclusion,the mixed Ti6Al4V-70%TA15(x=70%)powders is the most suitable candidate and is recommended as the raw material for LAR of TA15 forgings based on overall consideration of the compatibility calculations of the laser repaired zone with the wrought substrate zone.展开更多
Lattice‐doping and surface decoration are prospective routes to improve the visible‐light photocatalytic ability of TiO2,but the two techniques are difficult to combine into one preparation process because they are ...Lattice‐doping and surface decoration are prospective routes to improve the visible‐light photocatalytic ability of TiO2,but the two techniques are difficult to combine into one preparation process because they are usually conducted under different conditions,which limits the efficiency of TiO2 modification.In this study,TiO2 was successfully modified by simultaneous lattice‐doping and surface decoration,and the visible‐light photocatalytic capacity was largely improved.Upon comparing the method reported here with previous ones,the most significant difference is that Fe(II)‐phenanthroline was first used as the co‐precursor of the introduced elements of C,N,and Fe.These three elements were simultaneously introduced to TiO2 at high levels by this co‐precursor method.The as‐synthesized photocatalysts were systemically investigated and analyzed by several characterization methods such as XRD,FT‐IR,XPS,Raman spectroscopy,EPR,UV‐Vis DRS,photoluminescence spectra,photocurrent,electrochemical impedance spectra,TEM,and HRTEM.The photocatalytic degradation of 4‐NP under visible‐light irradiation was used to evaluate the photocatalytic activity of the photocatalysts.Based on the experimental data,a probable mechanism for the photocatalytic degradation by the photocatalysts is proposed.This is a novel method of using one source to simultaneously introduce metal and non‐metal elements to TiO2 at high levels,which may provide a new way to prepare highly effective TiO2 photocatalysts.展开更多
Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numer...Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numerous pollutants.However,the application of heterogeneous photocatalysis in environmental remediation has not achieved the expected consequences due to enormous challenges such as low photocatalytic efficiencies and high costs of heterogeneous photocatalysts in large-scale practical applications.Furthermore,pollutants in the natural environment,including water,air,and solid phases,are diverse and complex.Therefore,extensive efforts should be made to better understand and apply heterogeneous photocatalysis for environmental remediation.Herein,the fundamentals of heterogeneous photocatalysis for environmental remediation are introduced.Then,potential semiconductors and their modification strategies for environmental photocatalysis are systematically presented.Finally,conclusions and prospects are briefly summarized,and the direction for the future development of environmental photocatalysis is explored.This review may provide reference directions toward understanding,researching,and designing photocatalytic remediation systems for various environmental pollutants.展开更多
Phase diverse speckle is a novel kind of imaging technique and can be used to overcome image degradation from unknown phase aberrations, such as atmospheric turbulence. The wave-front phase expanded on the Zernike pol...Phase diverse speckle is a novel kind of imaging technique and can be used to overcome image degradation from unknown phase aberrations, such as atmospheric turbulence. The wave-front phase expanded on the Zernike polynomials is esti- mated from a pair of images (in the focal and out of focus planes). In this paper the principle of PDS is analyzed, and genetic algorithm is used as the iterative algorithm to simulate some characteristics, such as the influence of Zernike polynomials’ mode, amplitude of turbulence on the phase estimation. Thus, a new method for recovery of images is explored.展开更多
In this study,an acid-induced assembly strategy for a rutile TiO2 photocatalyst was proposed on the basis of the treatment of lamellar protonated titanate with a concentrated HNO3 solution.Nitrate groups were successf...In this study,an acid-induced assembly strategy for a rutile TiO2 photocatalyst was proposed on the basis of the treatment of lamellar protonated titanate with a concentrated HNO3 solution.Nitrate groups were successfully grafted onto a TiO2 surface and induced the assembly of rutile TiO2 nanorods into uniform spindle-like nanobundles.The resulting TiO2 product achieved a photocatalytic hydrogen evolution rate of 402.4μmol h^?1,which is 3.1 times higher than that of Degussa P25-TiO2.It was demonstrated that nitrate group grafting caused the rutile TiO2 surface to become negatively charged,which is favorable for trapping positive protons and improving charge carrier separation,thereby enhancing photocatalytic hydrogen production.Additionally,surface charges were crucial to structural stability based on electrostatic repulsion.This study not only developed a facile surface modification strategy for fabricating efficient H2 production photocatalysts but also identified an influence mechanism of inorganic acids different from that reported in the literature.展开更多
Tailoring the microstructure of pristine TiO2 is essential to narrow its band gap and prolong the charge lifetime. In particular, strategies involving fluorine have been used successfully to tune the surface chemistry...Tailoring the microstructure of pristine TiO2 is essential to narrow its band gap and prolong the charge lifetime. In particular, strategies involving fluorine have been used successfully to tune the surface chemistry, electronic structure, and morphology of TiO2 photocatalysts to improve their photocatalytic activity based on the strong complexation between fluoride ions and TiO2 and the high electronegativity of fluorine. In this review, we summarize the strategies involving fluorine to establish highly efficient TiO2 photocatalytic systems or fabricate highly efficient TiO2 photocatalysts. The main fluorine effects(i.e. the effects of fluorine on photocatalysis) include the following four aspects:(1) Surface effects of fluoride on TiO2 photocatalysis,(2) effects of fluorine doping on TiO2 photocatalysis,(3) fluoride-mediated tailoring of the morphology of TiO2 photocatalysts, and(4) the effects of fluorine on non-TiO2 photocatalysis. Additionally, the unique applications of these fluorine effects in photocatalysis, including selective degradation of pollutants, selective oxidation of chemicals, water-splitting to produce H2, reduction of CO2 to produce solar fuels, and improvement of the thermostability of TiO2 photocatalysts, are reviewed.展开更多
Zeolite catalysts,such as H-mordenite(H-MOR),are readily deactivated by coke deposition in carbonylation reactions.Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in cataly...Zeolite catalysts,such as H-mordenite(H-MOR),are readily deactivated by coke deposition in carbonylation reactions.Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in catalytic activity.Herein,we report the intrinsic impact of the pyridine adsorption behavior on H-MOR and the spacial hindrance of the zeolite frameworks on dimethyl ether(DME)carbonylation at a molecular level.We discovered that acid sites at O2 positions,located on common walls of eight-membered ring(8-MR)side pockets and 12-MR channels,were active in DME carbonylation,but were unfortunately poisoned during pyridine modification.Density functional theory calculations revealed that the pyridine-poisoned acid sites at the O2 positions could be easily regenerated due to the spacial hindrance of the zeolite frameworks.Accordingly,they can be facilely regenerated by proper thermal treatment,which induces 60%promotion in the catalytic activity along with a high stability.Our findings demonstrate the determining role of O2 positions in H-MOR for DME carbonylation and provide a new avenue for the rational design of other efficient zeolite-relevant catalytic systems.展开更多
文摘The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.
文摘The coordination reactions of Cu(Ⅱ) and Ni(Ⅱ) with acid alizarine blue B (AABB) in the presence of cetyltrimethylammonium bromide (CTAB) micelle were investigated using the microsurface adsorptionspectral correction technique (MSASC). The aggregation of AABB on CTAB followed the Langmuir isothermal adsorption law. The enrichment of AABB on CTAB sensitized the complexation between Cu(Ⅱ) or Ni(Ⅱ)and AABB. The binding ratio of AABB to CTAB was 1:2.5, and monomeric aggregate, AABB2CTAB5, was formed with an adsorption constant of 5.95×10^5 at 20 ℃ or 2.48×10^5 at 40 ℃. In the ternary complexation, the ratio of AABB:Cu and AABB:Ni were 1:1 and 1:2.5, respectively. Two types of aggregates, Cu2.AABB2·CTAB80 and Ni5.AABB2.CTAB80, were formed.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21276208), the Doctor Fundation of Education Ministry of China (No.20096118110008), the Special Research Fund of Shaanxi Provincial Department of Education of China (No.12JK0606), and the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (No.207-002J1304).
文摘The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl group (-OH) of TiO2 microspheres surface and the amino group (-NH2) of CuAPTPP reacted respectively with the active -NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2 that was confirmed by FT-IR spectra. The CuAPTPP-TDI-TiO2 microspheres were characterized with UV-visible, elemental analysis, XRD, SEM, and UV-Vis diffuse reflectance spectra. The effect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed, and the optimal molar ratio of TDI:TiO2 was established. The photocatalytic activity of CuAPTPP- TDI-TiO2 was evaluated using the photocatalytic degradation of methylene blue (MB) under visible-light irradiation. The results showed that, TDI, as a bond unit, was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2 microspheres, and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation. The degradation rate of 20 mg/L MB could reach 98.7% under Xe- lamp (150 W) irradiation in 120 rain. The degradation of MB followed the first-order reaction model under visible light irradiation, and the rate constant of 5.1× 10^-2 min-1 and the half- life of 11.3 min were achieved. And the new photocatalyst can be recycled for 4 times, remaining 90.0% MB degradation rate.
基金supported by the National Natural Science Foundation of China (51478370)the Engineering and Physical Sciences Research Council of UK–Natural Science Foundation of China (EPSRC-NSFC) International Joint Research Project (51461135005)~~
文摘A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field.
基金Research Funds from North University of China(No.130087)
文摘The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.
基金Supported by the Program for New Century Excellent Talents in University(No.NCET-05-0597)the National Natural Science Foundation of China(No.30270258)
文摘We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels(0,36,72,108,144 and 180 J/m2),and thereafter subjected to PAR,darkness,or red or blue light during a 2-h repair stage,each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers(CPDs),chlorophyll a(Chl a),phycoerythrin,and UV-B-absorbing mycosporinelike amino acids(MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation(36 and 72 J/m 2) promoted the growth of C. ocellatus; however,increased UV-B radiation gradually reduced the C. ocellatus growth(greater than 72 J/m2). The MAAs(palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition,photorepair was inhibited by red light,so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase,greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore,PAR,red light,and blue light play different roles during the repair processes for damage induced by UV-B radiation.
文摘The forbidden pitch "dip" in the critical dimension (CD) through the pitch curve is a well-known optical proximity effect. The CD and CD process window near the "dip",usually found near a pitch range of 1.1 to 1.4 wavelength/ NA (numerical aperture),is smaller when compared with other pitches. This is caused by inadequate imaging contrast for an unequal line and space grating. Although this effect is relatively well-known, its relationship with typical process condition parameters,such as the effective image blur caused by the photo-acid diffusion during the post exposure bake or the aberration in the imaging lens, has not been systematically studied. In this paper, we will examine the correlation between the image blur and the effect on the CD, including the decrease in the CD value (the depth of the "dip") and the CD process window. We find that both the decrease in the CD value and the focus latitude near the forbidden pitch correlate very well with the effective Gaussian image blur. Longer effective diffusion length correlates well with a smaller process window and a deeper CD "dip". We conclude that the dip depth is very sensitive to the change in image contrast.
基金Project(2016YFB11000100)supported by the National Key Technologies R&D Program,ChinaProject(KP201611)supported by Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(51475380)supported by the National Natural Science Foundation of China
文摘Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower.
基金Project(2019-00899-1-1)supported by the Ministry of Industry and Information Technology of ChinaProject(2021JM-060)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(3102019QD0409)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The application of mixed powders with different mass fraction on laser additive repairing(LAR)can be an effective way to guarantee the performance and functionality of repaired part in time.A convenient and feasible approach is presented to repair TA15 forgings by employing Ti6Al4V-xTA15 mixed powders in this paper.The performance compatibility of Ti6Al4V-xTA15 powders from the aspects of microhardness,tensile property,heat capacity,thermal expansion coefficient and corrosion resistance with the TA15 forgings was fully investigated.The primaryαlaths were refined and the volume fraction of the secondaryαphase was increased by increasing the mass fraction of TA15 in the mixed Ti6Al4V-xTA15 powders,leading to varied performances.In conclusion,the mixed Ti6Al4V-70%TA15(x=70%)powders is the most suitable candidate and is recommended as the raw material for LAR of TA15 forgings based on overall consideration of the compatibility calculations of the laser repaired zone with the wrought substrate zone.
基金supported by the National Natural Science Foundation of China(51368044,51568051,51668046)the National Science Fund for Excellent Young Scholars(51422807)+6 种基金the Science and Technology Supporting Program of Jiangxi Province(20151BBG70018)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(20162BCB23041)the Science Foundation for Young Scientists of Jiangxi Province-Key Project(20171ACB21034)the Science and Technology Project of Jiangxi Provincial Education Department(GJJ160700)the Natural Science Foundation of Jiangxi Province(20161BAB216102)the Jiangxi Province Educational Reform Project(JXJG-16-8-7)the Nanchang Hangkong University Educational Reform Project(JY1604,JY1605,KCPY-1511)~~
文摘Lattice‐doping and surface decoration are prospective routes to improve the visible‐light photocatalytic ability of TiO2,but the two techniques are difficult to combine into one preparation process because they are usually conducted under different conditions,which limits the efficiency of TiO2 modification.In this study,TiO2 was successfully modified by simultaneous lattice‐doping and surface decoration,and the visible‐light photocatalytic capacity was largely improved.Upon comparing the method reported here with previous ones,the most significant difference is that Fe(II)‐phenanthroline was first used as the co‐precursor of the introduced elements of C,N,and Fe.These three elements were simultaneously introduced to TiO2 at high levels by this co‐precursor method.The as‐synthesized photocatalysts were systemically investigated and analyzed by several characterization methods such as XRD,FT‐IR,XPS,Raman spectroscopy,EPR,UV‐Vis DRS,photoluminescence spectra,photocurrent,electrochemical impedance spectra,TEM,and HRTEM.The photocatalytic degradation of 4‐NP under visible‐light irradiation was used to evaluate the photocatalytic activity of the photocatalysts.Based on the experimental data,a probable mechanism for the photocatalytic degradation by the photocatalysts is proposed.This is a novel method of using one source to simultaneously introduce metal and non‐metal elements to TiO2 at high levels,which may provide a new way to prepare highly effective TiO2 photocatalysts.
文摘Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numerous pollutants.However,the application of heterogeneous photocatalysis in environmental remediation has not achieved the expected consequences due to enormous challenges such as low photocatalytic efficiencies and high costs of heterogeneous photocatalysts in large-scale practical applications.Furthermore,pollutants in the natural environment,including water,air,and solid phases,are diverse and complex.Therefore,extensive efforts should be made to better understand and apply heterogeneous photocatalysis for environmental remediation.Herein,the fundamentals of heterogeneous photocatalysis for environmental remediation are introduced.Then,potential semiconductors and their modification strategies for environmental photocatalysis are systematically presented.Finally,conclusions and prospects are briefly summarized,and the direction for the future development of environmental photocatalysis is explored.This review may provide reference directions toward understanding,researching,and designing photocatalytic remediation systems for various environmental pollutants.
文摘Phase diverse speckle is a novel kind of imaging technique and can be used to overcome image degradation from unknown phase aberrations, such as atmospheric turbulence. The wave-front phase expanded on the Zernike polynomials is esti- mated from a pair of images (in the focal and out of focus planes). In this paper the principle of PDS is analyzed, and genetic algorithm is used as the iterative algorithm to simulate some characteristics, such as the influence of Zernike polynomials’ mode, amplitude of turbulence on the phase estimation. Thus, a new method for recovery of images is explored.
基金supported by the National Natural Science Foundation of China (21771070, 21571071)the Fundamental Research Funds for the Central Universities (2018KFYYXJJ120, 2019KFYRCPY104)~~
文摘In this study,an acid-induced assembly strategy for a rutile TiO2 photocatalyst was proposed on the basis of the treatment of lamellar protonated titanate with a concentrated HNO3 solution.Nitrate groups were successfully grafted onto a TiO2 surface and induced the assembly of rutile TiO2 nanorods into uniform spindle-like nanobundles.The resulting TiO2 product achieved a photocatalytic hydrogen evolution rate of 402.4μmol h^?1,which is 3.1 times higher than that of Degussa P25-TiO2.It was demonstrated that nitrate group grafting caused the rutile TiO2 surface to become negatively charged,which is favorable for trapping positive protons and improving charge carrier separation,thereby enhancing photocatalytic hydrogen production.Additionally,surface charges were crucial to structural stability based on electrostatic repulsion.This study not only developed a facile surface modification strategy for fabricating efficient H2 production photocatalysts but also identified an influence mechanism of inorganic acids different from that reported in the literature.
文摘Tailoring the microstructure of pristine TiO2 is essential to narrow its band gap and prolong the charge lifetime. In particular, strategies involving fluorine have been used successfully to tune the surface chemistry, electronic structure, and morphology of TiO2 photocatalysts to improve their photocatalytic activity based on the strong complexation between fluoride ions and TiO2 and the high electronegativity of fluorine. In this review, we summarize the strategies involving fluorine to establish highly efficient TiO2 photocatalytic systems or fabricate highly efficient TiO2 photocatalysts. The main fluorine effects(i.e. the effects of fluorine on photocatalysis) include the following four aspects:(1) Surface effects of fluoride on TiO2 photocatalysis,(2) effects of fluorine doping on TiO2 photocatalysis,(3) fluoride-mediated tailoring of the morphology of TiO2 photocatalysts, and(4) the effects of fluorine on non-TiO2 photocatalysis. Additionally, the unique applications of these fluorine effects in photocatalysis, including selective degradation of pollutants, selective oxidation of chemicals, water-splitting to produce H2, reduction of CO2 to produce solar fuels, and improvement of the thermostability of TiO2 photocatalysts, are reviewed.
基金supported by the National Natural Science Foundation of China(21476159,21676182)~~
文摘Zeolite catalysts,such as H-mordenite(H-MOR),are readily deactivated by coke deposition in carbonylation reactions.Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in catalytic activity.Herein,we report the intrinsic impact of the pyridine adsorption behavior on H-MOR and the spacial hindrance of the zeolite frameworks on dimethyl ether(DME)carbonylation at a molecular level.We discovered that acid sites at O2 positions,located on common walls of eight-membered ring(8-MR)side pockets and 12-MR channels,were active in DME carbonylation,but were unfortunately poisoned during pyridine modification.Density functional theory calculations revealed that the pyridine-poisoned acid sites at the O2 positions could be easily regenerated due to the spacial hindrance of the zeolite frameworks.Accordingly,they can be facilely regenerated by proper thermal treatment,which induces 60%promotion in the catalytic activity along with a high stability.Our findings demonstrate the determining role of O2 positions in H-MOR for DME carbonylation and provide a new avenue for the rational design of other efficient zeolite-relevant catalytic systems.