In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagneticaJly induced transparency (EIT) base...In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagneticaJly induced transparency (EIT) based mechanism. In this paper, we explore a different mechanism for the similar phenomenon of the enhanced light deflection. This mechanism is based on the coherent population oscillation, which leads to the hole burning in the absorption spectrum. The medium causing the deflection of probe light is an ensemble of two-level atoms manipulated by a strong controlled field on the two photon resonances. In the large detuning condition, the response of the medium to the pump field and signal field is obtained with steady state approximation. And it is found that after the probe field travels across the medium, the signal ray bends due to the spatial-dependent profile of the control beam.展开更多
A switchable and tunable ytterbium-doped fiber ring laser(YDFL) is reported and demonstrated. Employing a Sagnac loop mirror fabricated by an 85-cm-long polarization-maintaining fiber(PMF), the proposed YDFL can opera...A switchable and tunable ytterbium-doped fiber ring laser(YDFL) is reported and demonstrated. Employing a Sagnac loop mirror fabricated by an 85-cm-long polarization-maintaining fiber(PMF), the proposed YDFL can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1 064 nm. Both stable dual-wavelength lasing and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The experimental results show that the output of the proposed fiber laser with two different operation modes is rather stable at room temperature.展开更多
We experimentally demonstrate the chaotic generation in a figure-of-eight erbium-doped fiber laser (F8L) with an optical fiber ring (OFR). With an appropriate combination of polarization controllers, we find that the ...We experimentally demonstrate the chaotic generation in a figure-of-eight erbium-doped fiber laser (F8L) with an optical fiber ring (OFR). With an appropriate combination of polarization controllers, we find that the fiber laser exhibits period-doubling route to chaos, and the chaotic self-synchronous dynamics has a tendency to be reduced significantly. The experimental results show the tendency is related to the interference and the nonlinear phase shift of light in the optical fiber ring. Meanwhile, the chaotic dynamics is related to the polarization state and pump power.展开更多
A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave...A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.展开更多
We investigate the features of the spontaneous emission spectra in a cold five-level atomic system coupled by a single elliptically polarized control field. We use wave function approach to derive the explicit and ana...We investigate the features of the spontaneous emission spectra in a cold five-level atomic system coupled by a single elliptically polarized control field. We use wave function approach to derive the explicit and analytical expressions of atomic spontaneous emission spectra. It is shown that some interesting phenomena such as spectralline enhancement, spectral-line suppression, spectral-line narrowing, spectral-line splitting and dark fluorescence can be observed in the spectra by appropriately modulating the phase difference between the right-hand circularly (LHC) and left-hand circularly (RHC) polarized components of the elliptically polarized control field and the intensity of external magnetic field. The number of emission peaks, the positions of fluorescence-quenching points can be also controlled. Furthermore, we propose an ultracold 87Rb atomic system for experimental observation. These investigations may find applications in high-precision spectroscopy.展开更多
A microwave photonic filter(MPF) based on multi-wavelength fiber laser and infinite impulse response(IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization m...A microwave photonic filter(MPF) based on multi-wavelength fiber laser and infinite impulse response(IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber(PMF) and three polarization controllers(PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges(FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response(FIR) filter. Then the 3-d B bandwidth of the MPF is reduced, and the main side-lobe suppression ratio(MSSR) is increased. By adjusting the gain of the radio frequency(RF) signal amplifier, the frequency response of the filter can be enhanced.展开更多
基金The project supported by the Natural Science Foundation of China under Grant Nos. 10775048, 10704023, 10775048, and 10325523the National Fundamental Research Program of China under Grant No. 2007CB925204the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No. 07C579
文摘In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagneticaJly induced transparency (EIT) based mechanism. In this paper, we explore a different mechanism for the similar phenomenon of the enhanced light deflection. This mechanism is based on the coherent population oscillation, which leads to the hole burning in the absorption spectrum. The medium causing the deflection of probe light is an ensemble of two-level atoms manipulated by a strong controlled field on the two photon resonances. In the large detuning condition, the response of the medium to the pump field and signal field is obtained with steady state approximation. And it is found that after the probe field travels across the medium, the signal ray bends due to the spatial-dependent profile of the control beam.
基金supported by the National Natural Science Foundation of China(No.61007029)the National High Technology Research and Development Program of China(No.2013AA031501)+1 种基金the Projects of Zhejiang Province in China(No.2010R50007)the Program for Science and Technology Innovative Research Team in Zhejiang Normal University
文摘A switchable and tunable ytterbium-doped fiber ring laser(YDFL) is reported and demonstrated. Employing a Sagnac loop mirror fabricated by an 85-cm-long polarization-maintaining fiber(PMF), the proposed YDFL can operate with stable dual-wavelength lasing or tunable single-wavelength lasing around 1 064 nm. Both stable dual-wavelength lasing and tunable single-wavelength lasing are achieved by adjusting a polarization controller in the Sagnac loop mirror. The experimental results show that the output of the proposed fiber laser with two different operation modes is rather stable at room temperature.
基金supported by the National Natural Science Foundation of China (No.61107033)the Natural Science Foundation for Young Scientists of Shanxi Province of China (No.2008021008)
文摘We experimentally demonstrate the chaotic generation in a figure-of-eight erbium-doped fiber laser (F8L) with an optical fiber ring (OFR). With an appropriate combination of polarization controllers, we find that the fiber laser exhibits period-doubling route to chaos, and the chaotic self-synchronous dynamics has a tendency to be reduced significantly. The experimental results show the tendency is related to the interference and the nonlinear phase shift of light in the optical fiber ring. Meanwhile, the chaotic dynamics is related to the polarization state and pump power.
基金supported by the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin in China(No.14JCYBJC16500)
文摘A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11275047, 11004069 and 91021011the Doctoral Foundation of the Ministry of Education of China under Grant No.20100142120081the National Basic Research Program of China under Grant No.2012CB922103
文摘We investigate the features of the spontaneous emission spectra in a cold five-level atomic system coupled by a single elliptically polarized control field. We use wave function approach to derive the explicit and analytical expressions of atomic spontaneous emission spectra. It is shown that some interesting phenomena such as spectralline enhancement, spectral-line suppression, spectral-line narrowing, spectral-line splitting and dark fluorescence can be observed in the spectra by appropriately modulating the phase difference between the right-hand circularly (LHC) and left-hand circularly (RHC) polarized components of the elliptically polarized control field and the intensity of external magnetic field. The number of emission peaks, the positions of fluorescence-quenching points can be also controlled. Furthermore, we propose an ultracold 87Rb atomic system for experimental observation. These investigations may find applications in high-precision spectroscopy.
基金supported by the National High Technology Research and Development Program of China(No.2013AA014200)the National Natural Science Foundation of China(No.11444001)the Tianjin Natural Science Foundation(No.14JCYBJC16500)
文摘A microwave photonic filter(MPF) based on multi-wavelength fiber laser and infinite impulse response(IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber(PMF) and three polarization controllers(PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges(FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response(FIR) filter. Then the 3-d B bandwidth of the MPF is reduced, and the main side-lobe suppression ratio(MSSR) is increased. By adjusting the gain of the radio frequency(RF) signal amplifier, the frequency response of the filter can be enhanced.