In this work exergetical performance analysis is carried out based on the second law of thermodynamics for organic flash cycle(OFC) using a two-phase expander instead of throttle expansion in order to recover efficien...In this work exergetical performance analysis is carried out based on the second law of thermodynamics for organic flash cycle(OFC) using a two-phase expander instead of throttle expansion in order to recover efficiently finite thermal reservoirs.The exergy destructions(anergies) at various components of the system are theoretically investigated as well as the exergy efficiency.Results show that the anergy of heat exchanger or two-phase expander decreases while the anergy of throttle valve increases with increasing flash temperature,and the exergy efficiency has an optimum value with respect to the flash temperature.Under the optimal conditions with respect to the flash temperature,exergy efficiency increases with the heating temperature and the component having the largest exergy destruction varies with the flash temperature or heating temperature.展开更多
Patterned ferromagnetic thin film shows promising applications in ultra-high density magnetic storage,magnetoresistive transducer,magnetic random access memory and many other devices.Since the performance of these dev...Patterned ferromagnetic thin film shows promising applications in ultra-high density magnetic storage,magnetoresistive transducer,magnetic random access memory and many other devices.Since the performance of these devices is closely associated with the magnetic properties of the etched patterns,it is necessary to study the effects of freshly etched surface oxidation on the magnetic properties of the patterned microstructures.In the current work,were carried out an X-ray Magnetic Circular Dichroism(XMCD) study on a 50 nm Co 0.9 Fe 0.1 continuous thin film and a related patterned Co 0.9 Fe 0.1 grating structure etched with a 2 μm period.Based on the sum rules,the spin and orbital moments were calculated for these two samples,respectively.The results indicated that the spin and orbital moments of grating structure(1.34μ B and 0.24μ B,respectively) decreased 17.3% compared with the corresponding continuous film(1.62μ B and 0.29μ B,respectively).We proposed that the moment decreasing of the patterned grating structure was mainly caused by the etched surface oxidation during the pattern manufacture process.The oxidation ratio of Co element in the patterned grating structure is 14.4% calculated from X-ray absorption spectroscopy(XAS) measurement.Considering the oxidation ratio,we amend the spin and orbital moment of Co and the amended result is basically in accordance with that of continuous film,demonstrating that the difference of the spin and orbital moments between the sub-micron grating unit and the continuous film is really caused by the oxidation.展开更多
基金supported by Research Fund,Kumoh National Institute of Technology
文摘In this work exergetical performance analysis is carried out based on the second law of thermodynamics for organic flash cycle(OFC) using a two-phase expander instead of throttle expansion in order to recover efficiently finite thermal reservoirs.The exergy destructions(anergies) at various components of the system are theoretically investigated as well as the exergy efficiency.Results show that the anergy of heat exchanger or two-phase expander decreases while the anergy of throttle valve increases with increasing flash temperature,and the exergy efficiency has an optimum value with respect to the flash temperature.Under the optimal conditions with respect to the flash temperature,exergy efficiency increases with the heating temperature and the component having the largest exergy destruction varies with the flash temperature or heating temperature.
基金supported by the National Natural Science Foundation of China (Grant No. 10274073)the Post-doctoral Research Start-up Funding of Anhui University of Architecture (Grant No. K02553)the Open Project of Building Energy Conservation Institute of Anhui University of Architecture (Grant No. K02592)
文摘Patterned ferromagnetic thin film shows promising applications in ultra-high density magnetic storage,magnetoresistive transducer,magnetic random access memory and many other devices.Since the performance of these devices is closely associated with the magnetic properties of the etched patterns,it is necessary to study the effects of freshly etched surface oxidation on the magnetic properties of the patterned microstructures.In the current work,were carried out an X-ray Magnetic Circular Dichroism(XMCD) study on a 50 nm Co 0.9 Fe 0.1 continuous thin film and a related patterned Co 0.9 Fe 0.1 grating structure etched with a 2 μm period.Based on the sum rules,the spin and orbital moments were calculated for these two samples,respectively.The results indicated that the spin and orbital moments of grating structure(1.34μ B and 0.24μ B,respectively) decreased 17.3% compared with the corresponding continuous film(1.62μ B and 0.29μ B,respectively).We proposed that the moment decreasing of the patterned grating structure was mainly caused by the etched surface oxidation during the pattern manufacture process.The oxidation ratio of Co element in the patterned grating structure is 14.4% calculated from X-ray absorption spectroscopy(XAS) measurement.Considering the oxidation ratio,we amend the spin and orbital moment of Co and the amended result is basically in accordance with that of continuous film,demonstrating that the difference of the spin and orbital moments between the sub-micron grating unit and the continuous film is really caused by the oxidation.