期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
负载有CuO的La_2Ti_2O_7的光催化还原水制氢性能研究 被引量:3
1
作者 杨秋玲 康诗钊 穆劲 《化学世界》 CAS CSCD 北大核心 2010年第1期1-4,8,共5页
通过浸渍法制备了负载有CuO的La2Ti2O7(CuO/La2Ti2O7),并对其紫外光催化还原水制氢性能进行了研究。结果表明,当以甲醇作为牺牲剂时,在紫外光照射下CuO/La2Ti2O7是一个高活性的光解水制氢催化剂。CuO的负载量为5%(mol/mol)时,产氢速率可... 通过浸渍法制备了负载有CuO的La2Ti2O7(CuO/La2Ti2O7),并对其紫外光催化还原水制氢性能进行了研究。结果表明,当以甲醇作为牺牲剂时,在紫外光照射下CuO/La2Ti2O7是一个高活性的光解水制氢催化剂。CuO的负载量为5%(mol/mol)时,产氢速率可达54.7μmol/(h.g)。在光催化过程中,CuO所起的作用是促进电荷的分离并成为产氢的活性位点。实验结果还表明在CuO/La2Ti2O7催化体系中,CuO是一个良好的助催化剂,完全有可能替代Ag、Pt等常用的贵金属助催化剂。这一研究结果为La2Ti2O7系催化剂在光解水制氢领域的实际应用提供了更为广阔的前景。 展开更多
关键词 La2Ti2O7 CUO 光催化还原水 制氢
下载PDF
铌酸钾纳米管的制备及其光催化还原水制氢研究 被引量:2
2
作者 穆帅 沈明 +1 位作者 杨晓晖 李向清 《化学世界》 CAS CSCD 北大核心 2010年第10期577-579,589,共4页
以铌酸钾颗粒为前驱体,经酸化和剥落处理,在简单、温和的条件下制得铌酸钾纳米管。透射电镜结果表明,产物具有管状形貌,且管形完整、管径分布窄、长径比大。研究了铌酸钾纳米管在紫外光照射下的光催化还原水制氢性能,铌酸钾纳米管的活... 以铌酸钾颗粒为前驱体,经酸化和剥落处理,在简单、温和的条件下制得铌酸钾纳米管。透射电镜结果表明,产物具有管状形貌,且管形完整、管径分布窄、长径比大。研究了铌酸钾纳米管在紫外光照射下的光催化还原水制氢性能,铌酸钾纳米管的活性明显高于铌酸钾颗粒,负载Pt的铌酸钾纳米管的制氢活性明显提高,在pH=3的10%(体积分数)甲醇水溶液中负载1.5%铂的铌酸钾纳米管的产氢活性(18.8 mmol/g.h)最高,是铌酸钾纳米管负载前(0.385 mmol/(g.h))的48.8倍。 展开更多
关键词 K4Nb6O17 纳米管 光催化还原水 制氢
下载PDF
A review on TiO_2-based Z-scheme photocatalysts 被引量:42
3
作者 Kezhen Qi Bei Cheng Jiaguo Yu 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期1936-1955,共20页
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the... TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted. 展开更多
关键词 TIO2 Z‐scheme photocatalyst Water splitting CO2 reduction Pollutant degradation
下载PDF
"Environmental phosphorylation"boosting photocatalytic CO_(2)reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces 被引量:5
4
作者 Qinghe Zhang Yang Xia Shaowen Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1667-1676,共10页
The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel ph... The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process. 展开更多
关键词 Photocatalytic CO_(2)reduction Hydrophobic surface Air-liquid-solid triphase interfaces Mass transport PHOSPHORYLATION
下载PDF
Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction 被引量:4
5
作者 Wanjun Sun Xiangyu Meng +5 位作者 Chunjiang Xu Junyi Yang Xiangming Liang Yinjuan Dong Congzhao Dong Yong Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1826-1836,共11页
Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and g... Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and global warming.Herein,for the first time,a series of novel spongy porous CDs@CoOx materials were synthesized to act as an efficient and stable bifunctional photocatalyst for water oxidation and CO2 reduction.Notably,the preparation temperatures visibly influence the morphologies and photocatalytic performances of the CDs@CoOx.Under the optimal conditions,a maximum O2 yield of 40.4% and pretty apparent quantum efficiency(AQE)of 58.6% at 460 nm were obtained over CDs@CoOx-300 for water oxidation.Similarly,the optimized sample CDs@CoOx-300 manifests significant enhancement on the CO2-to-CO conversion with a high selectivity of 89.3% and CO generation rate of 8.1μmol/h,which is superior to most previous cobalt-based catalysts for CO2 reduction.The composite CDs@CoOx-300 not only exposes more active sites but also facilitates electron transport,which results in excellent photocatalytic activity.In addition,the boosted photocatalytic behavior is attributed to the synergistic effect between CoOx and CDs,which was verified by the photocatalytic activity control experiments and electrochemical characterization.The work offers a novel strategy to fabricate a high performance bifunctional photocatalyst for water oxidation and CO2 reduction. 展开更多
关键词 Carbon dots coupled CoOx Bifunctional photocatalyst Water oxidation CO2 reduction Synergistic effect
下载PDF
Development of a bismuth-based metal-organic framework for photocatalytic hydrogen production 被引量:1
6
作者 Yejun Xiao Xiangyang Guo +3 位作者 Junxue Liu Lifang Liu Fuxiang Zhang Can Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1339-1344,共6页
A novel 3 D bismuth-organic framework(called Bi-TBAPy) single crystal was synthesized by employing 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H4TBAPy) as an organic linker. The study demonstrates that the Bi-TBAPy not onl... A novel 3 D bismuth-organic framework(called Bi-TBAPy) single crystal was synthesized by employing 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H4TBAPy) as an organic linker. The study demonstrates that the Bi-TBAPy not only possesses good chemical stability and suitable band edge positions for promising photocatalytic H2 evolution, but it also exhibits a typical ligand-to-metal charge transfer for favorable charge separation. The photocatalytic H2 evolution rates on the as-obtained Bi-TBAPy with different cocatalysts modified were examined with triethanolamine as the sacrificial reagent. Based on this, the hydrogen evolution rate of 140 μmol h-1 g-1 was obtained on the optimized sample with a loading of 2 wt% Pt as a cocatalyst. To the best of our knowledge, this is the first bismuth-based metal-organic framework(MOF) that functions as an effective photocatalyst for photocatalytic water reduction. Our study not only adds a new member to the family of photocatalyst materials, but also reveals the importance of cocatalyst modification in improving photocatalytic activity of MOFs. 展开更多
关键词 Metal-organic framework PHOTOCATALYSIS Water reduction Ligand-to-metal charge transfer Charge separation
下载PDF
Interfacial engineering of graphitic carbon nitride(g-C_3N_4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review 被引量:37
7
作者 Yijie Ren Deqian Zeng Wee-Jun Ong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期289-319,共31页
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic... As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future. 展开更多
关键词 Graphitic carbon nitride Metal sulfide PHOTOCATALYSIS Energy transformation Water splitting Reduction of carbon dioxide Pollutant degradation Nitrogen fixation
下载PDF
Interfacial coupling effects in g-C_(3)N_(4)/In_(x)Sb_(2-x)S_(3) heterojunction for enhanced photocatalytic activity under visible light 被引量:3
8
作者 YANG Ting HU Xin-yu +2 位作者 WANG Jun-tao YANG Tian-li WANG Wen-lei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1447-1462,共16页
A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)... A series of In_(x)Sb_(2-x)S_(3) nanosheets modified g-C_(3)N_(4)(In_(x)Sb_(2-x)S_(3)-TCN)heterojunctions with different g-C_(3)N_(4) contents were fabricated by an in situ deposition method.All the In_(x)Sb_(2-x)S_(3)-TCN composites were applied as photocatalysts in Cr(Ⅵ)polluted water treatment and the results displayed that In_(x)Sb_(2-x)S_(3)-TCN could effectively remove Cr(Ⅵ)under visible light through synergistic effects of adsorption and photocatalytic reduction.Especially,In_(x)Sb_(2-x)S_(3)-TCN-70(70 mg g-C_(3)N_(4)) exhibited the most excellent adsorption and photocatalytic reduction performance among all composites,which possessed a high equilibrium adsorption capacity of 12.45 mg/g in a 30.0 mg/L Cr(Ⅵ)aqueous solution,and reduced Cr(Ⅵ)to Cr(Ⅲ)within 10 min under visible light irradiation.DRS and PL results indicated that the interfacial coupling effect between g-C_(3)N_(4)and In_(x)Sb_(2-x)S_(3) enhanced the utilization efficiency of visible light and suppressed photoinduced carrier recombination,which improved the photocatalytic activity of composites.Moreover,the photocatalyst exhibited satisfactory reduction activity and good stability after 5 cycles of Cr(Ⅵ)adsorptionphotoreduction. 展开更多
关键词 In_(x)Sb_(2-x)S_(3)-TCN PHOTOCATALYST interfacial coupling effects Cr(Ⅵ)-contained wastewater adsorption photocatalytic reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部