Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active com...Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active components of heterogeneous photocatalysts remains a problem. Herein, the in-situ fabrication of an SnO2/SnS2 heterostructure photocatalyst was performed;the structure showed enhanced photocatalytic performance resulting from the tight-contact heterostructures. The results of photoelectrochemical measurements further verified that a tight-contact heterostructure improved the separation of photogenerated electron-hole pairs. The results of EIS Bode plots also demonstrated that such in-situ fabricated SnO2/SnS2 samples exhibited the longest carrier lifetime(41.6 μs) owing to the intimate interface of SnO2/SnS2 heterostructures.展开更多
Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is f...Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones.展开更多
文摘Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active components of heterogeneous photocatalysts remains a problem. Herein, the in-situ fabrication of an SnO2/SnS2 heterostructure photocatalyst was performed;the structure showed enhanced photocatalytic performance resulting from the tight-contact heterostructures. The results of photoelectrochemical measurements further verified that a tight-contact heterostructure improved the separation of photogenerated electron-hole pairs. The results of EIS Bode plots also demonstrated that such in-situ fabricated SnO2/SnS2 samples exhibited the longest carrier lifetime(41.6 μs) owing to the intimate interface of SnO2/SnS2 heterostructures.
基金Projects (20676016,21076024) supported by the National Natural Science Foundation of China
文摘Tin oxide nanociystals with diameters smaller than 10 nm were synthesized using Na2SnO3 and CO2 as reactants and cetyltrimethylammonium bromide(CTAB) as stabilizer under mild conditions.As a mild acidic gas,CO2 is favorable for the accurate adjustment of pH value of Na2SnO3 solution.Stannate salt is stable,cheap and easy in operation.The effects of Na2SnO3concentration,CTAB concentration,aging temperature,and aging time on the nanociystals were studied.It was found that,with the increasing Na2SnO3 concentration,aging temperature and aging time,SnO2 nanociystals size decreases.The formation of SnO2nanociystals can be interpreted by electrostatic-interaction mechanism.SnO2 nanociystals show high photocatalytic activities in the degradation of Rhodamine B solution.The catalytic activity of small nanocrystals is higher than that of large ones.