In this research, it used advanced oxidation processes for the recovery, detoxification and mineralization of wastewater mainly contaminated by antibiotics (ciprofloxacin). These processes can be used alone or in co...In this research, it used advanced oxidation processes for the recovery, detoxification and mineralization of wastewater mainly contaminated by antibiotics (ciprofloxacin). These processes can be used alone or in combination with each other or by complementing traditional methods, even allowing the disinfection of bacterial and viral inactivation. With the use of experimental systems UV/H202/O3, UV/H202, it can achieve total mineralization of the compound. Ciprofloxacin solutions used at 50, 100, 200, 300, 400 and 500 ppm, degraded to 100% of antibiotics and by a microbiological method show that the loss of biological activity is inversely proportional to the time of irradiation.展开更多
Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The d...Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.展开更多
文摘In this research, it used advanced oxidation processes for the recovery, detoxification and mineralization of wastewater mainly contaminated by antibiotics (ciprofloxacin). These processes can be used alone or in combination with each other or by complementing traditional methods, even allowing the disinfection of bacterial and viral inactivation. With the use of experimental systems UV/H202/O3, UV/H202, it can achieve total mineralization of the compound. Ciprofloxacin solutions used at 50, 100, 200, 300, 400 and 500 ppm, degraded to 100% of antibiotics and by a microbiological method show that the loss of biological activity is inversely proportional to the time of irradiation.
文摘Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.