The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to r...The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.展开更多
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has...Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.展开更多
The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatme...The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.展开更多
ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered d...ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed.展开更多
Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes we...Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.展开更多
In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degr...In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation.展开更多
A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocataly...A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials.展开更多
The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and...The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and water content showed a linear correlation fashion. Chlorophyll fluorescence parameters and antioxidative capacity were altered by water stress. Phi(PSII) and q(P) were reduced by 50% and 34% of the control, respectively, while NPQ rose ca. 180%. SOD activity and ability to scavenge DPPH. free radical went down but membrane permeability changed slightly. However, when an additional photooxidation by MV with high PPFD was carried out with leaf discs from watered (C-3 mode) and drought plants (CAM mode), q(P) and Phi(PSII) in leaves at induced CAM mode stage continuously decreased to a very low level. High 1 - q(P) value (0.86) and 1 - q(P)/NPQ ratio (>1) indicated the presence of high reduction state and unbalance of light energy budget. Together with the marked loss of membrane integral, it was evidenced that photooxidative damage was more serious in the induced CAM mode than in the C-3 mode. No advantage of photooxidation tolerance was found at the induced CAM expression stage of the facultative CAM plant, as compared with its C-3 mode stage, and also with the constitutive CAM plants reported previously. The differences in photooxidation sensitivity between the inducible CAM expressing plant and the constitutive CAM plant were discussed.展开更多
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded...We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.展开更多
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ...The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.展开更多
A simple, rapid and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of meloxicam. The method is based on the CL-emitting reaction between meloxicam and potassium pe...A simple, rapid and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of meloxicam. The method is based on the CL-emitting reaction between meloxicam and potassium permanganate in a hydrochloric acid medium, enhanced by formaldehyde (HCHO). Under optimum conditions, calibration curve over the range of 1.0-20.0μg/mL was obtained. The proposed method was successfully applied to the determination of meloxicam in capsules with no evi- dence of interference from common excipients. The detection limit of this method was 25.6 ng/mL. The relative standard deviation was 2.1% for 10.0 μg/mL meloxicam. The sample throughput was found to be 120 samples/h.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
IS1921 VF-256 type ground object spectrometer was used to extract the spectral data of the meadow grassland and bare land to obtain their refleotivity spectral characteristics. The experiment was carried out on the lo...IS1921 VF-256 type ground object spectrometer was used to extract the spectral data of the meadow grassland and bare land to obtain their refleotivity spectral characteristics. The experiment was carried out on the low mountain meadow steppe in the Saiwundu Village, Hargentai Town, West Ujumqin Banner, Xilin Gol League, Inner Mongolia. The results showed that different ground objects had different reflectances. The spectral reflectance curve of the meadow steppe plant communities had obvious characteristics of peak and valley in the visible spectrum band, and had strong reflection in the near-infrared band. The reflection curve of the bare lands in the visible spectrum band was higher than that of the meadow grassland communities while inthe near-infrared band it was lower than that of the meadow grassland communities. Under different degradation gradients, the spectral reflectivity of the meadow steppe grassland communities increased with the enhancement of the degradation gradients. Under the same degradation gradient, the Stipa grandis communities had a lower visible light reflectivity than the Artemisia frigida communities but had a higher near-infrared reflectivity than the Artemisia frigida communities; different ground objects on the meadow steppe had different spectrum characteristic, and showed a certain discrepancies with the changes of the degradation level.展开更多
Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photo...Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.展开更多
A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with ...A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.展开更多
[Objective] The aim was to establish the method for determining total flavoens content in Ceratocarpus arenarius L.[Method ] Flavonoids were extracted from C. arenarius by heating refluxing, and determined with rutin ...[Objective] The aim was to establish the method for determining total flavoens content in Ceratocarpus arenarius L.[Method ] Flavonoids were extracted from C. arenarius by heating refluxing, and determined with rutin as the standard.[Result] In the range of 0.019-0.102 mg/ml, linear relationship was good (r=0.999 1). This method had higher precision and accuracy with RSD of 0.226% and recoveries of 99.36%. The total flavones content from C. arenarius was 10.12 mg/g. [Conclusion] The method is simple and reliable, which could be used to control the quality of C. arenariu.展开更多
The mechanism of nitrocompounds quenching of the fluorescence of 5, 5′ dipheny1 2, 2′ bisoxazole (POOP) and trans 1, 2 bis [2 (5 phenyloxazolyl)] ethene (POEOP) has been studied. It was found that the fluores...The mechanism of nitrocompounds quenching of the fluorescence of 5, 5′ dipheny1 2, 2′ bisoxazole (POOP) and trans 1, 2 bis [2 (5 phenyloxazolyl)] ethene (POEOP) has been studied. It was found that the fluorescence of oxazoles was quenched mainly by the absorption competition and radiationless energy transfer of nitrocompounds. The fluorescence quenching rate constants of nitrobenzene and nitromethane are 3.0×10 10 L·mol -1 ·s -1 and 1.5×10 8 L·mol -1 ·s -1 respectively for POEOP. This remarkable difference was explicated.展开更多
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes...In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.展开更多
文摘The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.
文摘Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion.
基金the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(No.451-03-47/2023-01/200017)the PhD fellowship of Slađana LAKETIĆ.Authors would also like to acknowledge the help of Dr.Anton HOHENWARTER from the Department of Materials Science,Montanuniversitat Leoben,Austria,during the Ti−45Nb alloy microstructural analysis.
文摘The Ti−45Nb(wt.%)alloy properties were investigated in relation to its potential biomedical use.Laser surface modification was utilized to improve its performance in biological systems.As a result of the laser treatment,(Ti,Nb)O scale was formed and various morphological features appeared on the alloy surface.The electrochemical behavior of Ti−45Nb alloy in simulated body conditions was evaluated and showed that the alloy was highly resistant to corrosion deterioration regardless of additional laser surface modification treatment.Nevertheless,the improved corrosion resistance after laser treatment was evident(the corrosion current density of the alloy before laser irradiation was 2.84×10^(−8)A/cm^(2),while that after laser treatment with 5 mJ was 0.65×10^(−8)A/cm^(2))and ascribed to the rapid formation of a complex and passivating bi-modal surface oxide layer.Alloy cytotoxicity and effects of the Ti−45Nb alloy laser surface modification on the MRC-5 cell viability,morphology,and proliferation were also investigated.The Ti−45Nb alloy showed no cytotoxic effect.Moreover,cells showed improved viability and adherence to the alloy surface after the laser irradiation treatment.The highest average cell viability of 115.37%was attained for the alloy laser-irradiated with 15 mJ.Results showed that the laser surface modification can be successfully utilized to significantly improve alloy performance in a biological environment.
基金Project(21306041)supported by the National Natural Science Young Foundation of ChinaProject(21271071)supported by the National Natural Science Foundation of ChinaProject(15A076)supported by the Scientific Research Foundation of Hunan Provincial Education Department of China
文摘ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed.
基金NationalNaturalScienceFoundationofChina (No .59772 0 1 9)
文摘Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc.
基金supported by the National Natural Science Funds for Distinguished Young Scholars(21425728)the National Natural Science Foundation of China(21173093+4 种基金211770482127308821477044)the Key Project of Natural Science Foundation of Hubei Province(2013CFA114)the the Fundamental Research Funds for the Central Universities(CCNU14Z01001 CCNU14KFY002)~~
文摘In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation.
基金supported by the National Natural Science Foundation of China(31470434,21406090,21576124,21676124,21507047)the Project of Science and Technology Development Plan of Taicang(TC2015NY05)~~
文摘A stable PNIPAM/Fe_3O_4/g-C_3N_4 composite photocatalyst was designed and prepared by a thermal photoinitiation technology.The structure and properties of the materials were characterized and the composite photocatalyst was found to show good stability for tetracycline degradation.The sample not only retained the magnetic properties of Fe_3O_4,allowing it to be recycled,but its photocatalytic properties could also be changed by controlling the temperature of the reaction system.The degradation intermediate products of tetracycline were further investigated by MS.This work provides a new facile strategy for the development of intelligent and recyclable photocatalytic materials.
文摘The switch from C-3 to CAM pathway was induced by water stress in a C-3/CAM intermediate plant Sedum spectabile Boreau. Typical CAM criteria were observed upon 15 d of withholding water. Leaf delta(13)C value (-%) and water content showed a linear correlation fashion. Chlorophyll fluorescence parameters and antioxidative capacity were altered by water stress. Phi(PSII) and q(P) were reduced by 50% and 34% of the control, respectively, while NPQ rose ca. 180%. SOD activity and ability to scavenge DPPH. free radical went down but membrane permeability changed slightly. However, when an additional photooxidation by MV with high PPFD was carried out with leaf discs from watered (C-3 mode) and drought plants (CAM mode), q(P) and Phi(PSII) in leaves at induced CAM mode stage continuously decreased to a very low level. High 1 - q(P) value (0.86) and 1 - q(P)/NPQ ratio (>1) indicated the presence of high reduction state and unbalance of light energy budget. Together with the marked loss of membrane integral, it was evidenced that photooxidative damage was more serious in the induced CAM mode than in the C-3 mode. No advantage of photooxidation tolerance was found at the induced CAM expression stage of the facultative CAM plant, as compared with its C-3 mode stage, and also with the constitutive CAM plants reported previously. The differences in photooxidation sensitivity between the inducible CAM expressing plant and the constitutive CAM plant were discussed.
文摘We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
基金Project (51275179) supported by the National Natural Science Foundation of ChinaProject (2010A090200072) supported by Industry,University and Research Institute Combination of Ministry of Education, Ministry of Science and Technology and Guangdong Province,China+1 种基金Project (2012M511797) supported by China Postdoctoral Science FoundationProject (2012ZB0014) supported by FundamentalResearch Funds for the Central Universities of China
文摘The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.
文摘A simple, rapid and sensitive flow injection chemiluminescence (FI-CL) method has been developed for the determination of meloxicam. The method is based on the CL-emitting reaction between meloxicam and potassium permanganate in a hydrochloric acid medium, enhanced by formaldehyde (HCHO). Under optimum conditions, calibration curve over the range of 1.0-20.0μg/mL was obtained. The proposed method was successfully applied to the determination of meloxicam in capsules with no evi- dence of interference from common excipients. The detection limit of this method was 25.6 ng/mL. The relative standard deviation was 2.1% for 10.0 μg/mL meloxicam. The sample throughput was found to be 120 samples/h.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金Supported by Inner Mongolia Meteorological Brueau Technology ResearchProject(200618)~~
文摘IS1921 VF-256 type ground object spectrometer was used to extract the spectral data of the meadow grassland and bare land to obtain their refleotivity spectral characteristics. The experiment was carried out on the low mountain meadow steppe in the Saiwundu Village, Hargentai Town, West Ujumqin Banner, Xilin Gol League, Inner Mongolia. The results showed that different ground objects had different reflectances. The spectral reflectance curve of the meadow steppe plant communities had obvious characteristics of peak and valley in the visible spectrum band, and had strong reflection in the near-infrared band. The reflection curve of the bare lands in the visible spectrum band was higher than that of the meadow grassland communities while inthe near-infrared band it was lower than that of the meadow grassland communities. Under different degradation gradients, the spectral reflectivity of the meadow steppe grassland communities increased with the enhancement of the degradation gradients. Under the same degradation gradient, the Stipa grandis communities had a lower visible light reflectivity than the Artemisia frigida communities but had a higher near-infrared reflectivity than the Artemisia frigida communities; different ground objects on the meadow steppe had different spectrum characteristic, and showed a certain discrepancies with the changes of the degradation level.
文摘Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.
文摘A two-channel thermal dissociation cavity ring down spectroscopy (CRDS) instrument has been built for in situ, real-time measurement of NO2 and total RNO2 (peroxy nitrates and alkyl nitrates) in ambient air, with a NO2 detection limit of 0.10 ppbv at 1 s. A 6-day long measurement was conducted at urban site of Hefei by using the CRDS instrument with a time resolution of 3 s. A commercial molybdenum converted chemiluminescence (Mo-CL) instrument was also used for comparison. The average RNO2 concentration in the 6 days was measured to be 1.94 ppbv. The Mo-CL instrument overestimated the NO2 concentration by a bias of +1.69 ppbv in average, for the reason that it cannot distinguish RNO2 from NO2. The relative bias could be over 100% during the afternoon hours when NO2 was low but RNO2 was high.
基金Supported by International Science and Technology Cooperation Programme of Xinjiang Crops(2011BC003)~~
文摘[Objective] The aim was to establish the method for determining total flavoens content in Ceratocarpus arenarius L.[Method ] Flavonoids were extracted from C. arenarius by heating refluxing, and determined with rutin as the standard.[Result] In the range of 0.019-0.102 mg/ml, linear relationship was good (r=0.999 1). This method had higher precision and accuracy with RSD of 0.226% and recoveries of 99.36%. The total flavones content from C. arenarius was 10.12 mg/g. [Conclusion] The method is simple and reliable, which could be used to control the quality of C. arenariu.
文摘The mechanism of nitrocompounds quenching of the fluorescence of 5, 5′ dipheny1 2, 2′ bisoxazole (POOP) and trans 1, 2 bis [2 (5 phenyloxazolyl)] ethene (POEOP) has been studied. It was found that the fluorescence of oxazoles was quenched mainly by the absorption competition and radiationless energy transfer of nitrocompounds. The fluorescence quenching rate constants of nitrobenzene and nitromethane are 3.0×10 10 L·mol -1 ·s -1 and 1.5×10 8 L·mol -1 ·s -1 respectively for POEOP. This remarkable difference was explicated.
基金supported by the National Natural Science Foundation of China(21373056)the Science and Technology Commission of Shanghai Municipality(13DZ2275200)~~
文摘In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance.