期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
毛竹材表面光化降解的FTIR和XPS分析 被引量:15
1
作者 王小青 任海青 +2 位作者 赵荣军 程强 陈勇平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第7期1864-1867,共4页
竹材光变色和光化降解过程比较复杂。该文以我国资源丰富的毛竹为研究对象,利用氙光衰减仪对竹材进行表面劣化处理,采用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对竹材表面化学组成和结构变化进行表征。XPS测试结果表明,竹材表... 竹材光变色和光化降解过程比较复杂。该文以我国资源丰富的毛竹为研究对象,利用氙光衰减仪对竹材进行表面劣化处理,采用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对竹材表面化学组成和结构变化进行表征。XPS测试结果表明,竹材表面光劣化处理后O元素含量及氧碳比(O/C)明显增加;从C原子结合形式来看,C1(C—C)含量减少,C2(C—O)含量增加,C3(CO)和C4(O-CO)含量增加明显,C的氧化态显著升高。FTIR分析表明,光劣化处理使得与木质素有关的吸收峰(如1 604,1 512及1 462 cm-1)强度明显降低,木质素发生降解;同时1 735 cm-1处非共轭羰基吸收峰强度明显增强,表明有新的羰基类物质生成,竹材表面发生光氧化反应。竹材表面的多糖物质(纤维素和半纤维素)受光劣化影响较小,其相对含量在劣化处理后明显提高。 展开更多
关键词 竹材 光化降解 木质素 傅里叶变换红外 X射线电子能谱
下载PDF
臭氧抑制木材表面光化降解的机理 被引量:2
2
作者 韩士杰 范秀华 时维春 《吉林林学院学报》 1993年第2期49-52,共4页
本文用臭氧溅射椴木单板表面,结果表明:实施这种处理后的木材表面形成一层高氧层(氧含量高于素材),在紫外光的辐射下,集聚在该层中的臭氧也将参与木材表面的自由基反应,这大大减少了原来素材表面的氧参与自由基反应的机会,进而达到抑制... 本文用臭氧溅射椴木单板表面,结果表明:实施这种处理后的木材表面形成一层高氧层(氧含量高于素材),在紫外光的辐射下,集聚在该层中的臭氧也将参与木材表面的自由基反应,这大大减少了原来素材表面的氧参与自由基反应的机会,进而达到抑制木材表面光化降解之目的。 展开更多
关键词 臭氧 光化降解 自由基反应 溅射 木材 椴木单板
下载PDF
滴注过程中应注意避光的药品 被引量:31
3
作者 王春芳 常威 《中国药事》 CAS 2008年第1期77-79,共3页
综述了对光敏感、易光化降解、易氧化的临床常用注射剂的光稳定性研究进展。除硝普钠、对氨基水杨酸钠、两性霉素B等注射液需避光滴注外,吡啶类、噻嗪类、酚类、部分维生素类、喹诺酮类及抗肿瘤化疗药物在临床使用时,也应当采用避光滴... 综述了对光敏感、易光化降解、易氧化的临床常用注射剂的光稳定性研究进展。除硝普钠、对氨基水杨酸钠、两性霉素B等注射液需避光滴注外,吡啶类、噻嗪类、酚类、部分维生素类、喹诺酮类及抗肿瘤化疗药物在临床使用时,也应当采用避光滴注的措施,以保证临床用药的安全性和有效性。 展开更多
关键词 稳定 光化降解 输液
下载PDF
临床避光药品的使用 被引量:8
4
作者 吴勤研 苏梦 《河南职工医学院学报》 2012年第1期125-127,共3页
光照会加速药物的氧化,一些化学性质不稳定的药物见光后易分解,不仅降低了药物的活性,而且增加了药物的毒性,严重影响药物的疗效。尤其是水溶液,药物分子被分散,对光的通透性增加,以及水中氧的氧化作用,加大了光解作用。
关键词 稳定性 光化降解 药品
下载PDF
Construction and photocatalytic properties toward rhodamine B of CdS/Fe_(3)O_(4) heterojunction
5
作者 CONG Yuan WANG Yunhao +5 位作者 LI Wanping ZHANG Zhicheng LIU Shuo GUO Huiyuan YUAN Hongyu ZHOU Zhiping 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2241-2249,共9页
A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated... A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability. 展开更多
关键词 CdS/Fe_(3)O_(4) PHOTOCATALYST degradation rate rhodamine B
下载PDF
Co_(3)O_(4)/TiO_(2) composite photocatalyst:Preparation and synergistic degradation performance of toluene
6
作者 ZHOU Fei JIA Xiaolin 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2232-2240,共9页
TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microsc... TiO_(2) nanobelts and Co_(3)O_(4)/TiO_(2) catalytic materials were prepared using the hydrothermal method.The cat-alyst was characterized by X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray electron spectroscopy,and fluorescence spectroscopy.At room temperature,with a relative humidity of 50.0%,the total gas flow rate of 1.0 L·min-1,the space velocity of 1.05×10^(4) h^(-1),and toluene volume concentration of 25.0µL·L^(-1),two 6 W vacuum ultraviolet lamps were used as light sources to catalyze,degrade,and mineralize toluene.The results show that the prepared catalyst is in the shape of nano-ribbons.The loading of Co_(3)O_(4) inhibits the recombina-tion of photogenerated electrons and holes and can effectively improve the catalytic performance.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%Co_(3)O_(4) has the best catalytic effect.When N2 was used as a carrier gas,the degradation rate of tol-uene was only 34.7%.The toluene degradation is mainly due to the photolysis of vacuum ultraviolet light.When air was used as a carrier gas,O_(3) was produced.The Co_(3)O_(4)/TiO_(2) with a load of 6.0%and vacuum ultraviolet synergistical-ly promote toluene degradation.The highest degradation rate of toluene was 91.7%and the mineralization rate was 74.6%.The degradation rate of toluene was 2.6 times that of nitrogen as a carrier gas. 展开更多
关键词 vacuum ultraviolet photocatalysis TOLUENE DEGRADATION Co_(3)O_(4)/TiO_(2)
下载PDF
Synthesis of A-position Ba-doped Perovskite LaCoO_(3) and Performance of Photocatalytic Phenol Degradation
7
作者 YUAN Li-jing ZHAO Kun-feng +7 位作者 SONG Jin GUO Shi-long GUO Jia-le WANG Yan MENG Xian-jie WEI Xian-xian LIU Zhen-min WANG Xiao-xiao 《分子催化(中英文)》 CAS CSCD 北大核心 2024年第6期510-520,I0001,I0002,共13页
The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0... The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0.4,0.5,0.6)catalysts with varying Ba doping ratios were synthesized using the citric acid complexation-hydrothermal synthesis combined method for the degradation of phenol under visible light irradiation.Among the synthesized catalysts,La_(0.5)Ba_(0.5)CoO_(3) exhibited the highest photocatalytic activity.In addition,the photocatalytic mechanism for La_(0.5)Ba_(0.5)CoO_(3) perovskite degradation of phenol was also discussed.The synthesized catalysts were characterized using XRD,SEM,FT-IR,XPS,MPMS and other characterization techniques.The results revealed that the diffraction peak intensity of La_(1−x)Ba_(x)CoO_(3) increased with higher Ba doping ratios,and the La_(0.4)Ba_(0.6)CoO_(3) exhibited the strongest diffraction peaks.The catalyst particle sizes ranged from 10 to 50 nm,and the specific surface area decreased with increasing Ba content.Additionally,the paramagnetic properties of La_(0.5)Ba_(0.5)CoO_(3) were similar to that of La_(0.4)Ba_(0.6)CoO_(3).The experimental results suggested that the incorporation of Ba could significantly improve the catalytic performance of La_(1−x)Ba_(x)CoO_(3) perovskites,promote electron transfer and favor to the generation of hydroxyl radicals(•OH),leading to the efficiently degradation of phenol. 展开更多
关键词 perovskite catalyst La_(1−x)Ba_(x)CoO_(3) PHOTOCATALYSIS phenol degradation mechanism
下载PDF
应用ESR监测研究木材表面保护剂的最佳效果
8
作者 韩士杰 时维春 +2 位作者 周子俊 张凯 崔力庆 《吉林林学院学报》 1990年第1期37-42,共6页
根据木材表面紫外光因素的劣化机理,选用多种化学药品作为木材表面保护剂,惜助ESR监测,对保护效果进行研究,得出浓度为5%的CrO_3效果最佳。
关键词 木材保护 椴木单板 光化降解
下载PDF
Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts 被引量:16
9
作者 刘亚男 王瑞霞 +5 位作者 杨正坤 杜虹 姜一帆 申丛丛 梁况 徐安武 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2135-2144,共10页
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4... With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance. 展开更多
关键词 Oxygen deficient zinc oxide Graphitic carbon nitride Hybrid photocatalysts PHOTODEGRADATION Z-scheme
下载PDF
Synthesis and highly efficient photocatalytic activity of mixed oxides derived from ZnNiAl layered double hydroxides 被引量:6
10
作者 张丽 戴超华 +2 位作者 张秀秀 刘又年 阎建辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2380-2389,共10页
ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered d... ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed. 展开更多
关键词 ZnNiAl layered double hydroxide mixed oxide photocatalytic degradation phototatalytic activity
下载PDF
Recent developments in visible-light photocatalytic degradation of antibiotics 被引量:40
11
作者 李娣 施伟东 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期792-799,共8页
With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such ... With the significant discharge of antibiotic wastewater into the aquatic and terrestrial ecosystems, antibiotic pollution has become a serious problem and presents a hazardous risk to the environment. To address such issues, various investigations on the removal of antibiotics have been undertaken. Photocatalysis has received tremendous attention owing to its great potential in removing antibiotics from aqueous solutions via a green, economic, and effective process. However, such a technology employing traditional photocatalysts suffers from major drawbacks such as light absorption being restricted to the UV spectrum only and fast charge recombination. To overcome these issues, considerable effort has been directed towards the development of advanced visible light-driven photocatalysts. This mini review summarises recent research progress in the state-of-the-art design and fabrication of photocatalysts with visible-light response for photocatalytic degradation of antibiotic wastewater. Such design strategies involve the doping of metal and non-metal into ultraviolet light-driven photocatalysts, development of new semiconductor photocatalysts, construction of heterojunction photocatalysts, and fabrication of surface plasmon resonance-enhanced photocatalytic systems. Additionally, some perspectives on the challenges and future developments in the area of photocatalytic degradation of antibiotics are provided. 展开更多
关键词 Antibiotic Visible-light photocatalyst Photocatalytic degradation DOPING HETEROJUNCTION Surface plasmon resonance-enhanced photocatalysis
下载PDF
Photocatalytic degradation and inactivation of Escherichia coli by ZnO/ZnAl_2O_4 with heteronanostructures 被引量:2
12
作者 张丽 阎建辉 +3 位作者 周民杰 余艳萍 刘晔 刘又年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期743-749,共7页
ZnO/Znml2O4 nanocomposites with heteronanostructures were successfully prepared by co-precipitation method. The as-prepared samples were characterized by HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. Th... ZnO/Znml2O4 nanocomposites with heteronanostructures were successfully prepared by co-precipitation method. The as-prepared samples were characterized by HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photoeatalytic activities of the as-prepared samples were evaluated by the photocatalytic degradation of methyl orange and inactivation of Escherichia coli in suspension under the irradiation of the simulated sunlight. The effects of compositions, calcination temperatures, concentration ofphotocatalysts and light source on the photocatalytic activities were systematically studied. The results show that when the concentration of ZnO/ZnA1204 photocatalyst with the starting Zn to Al molar ratio of 1:1.5 calcined at 600 ℃ is 1.0 g/L, the maximum photocatalytic degradation rate of 98.5% can be obtained in 50 min under the irradiation of the simulated sunlight. Under the same conditions, an inactivation rate of 99.8% for E.coli is achieved in 60 min. 展开更多
关键词 ZnO/ZnAl2O4 photocatalysis degradation INACTIVATION HETEROJUNCTION
下载PDF
Strong visible absorption and excellent photocatalytic performance of brown TiO_2 nanoparticles synthesized using one-step low-temperature process 被引量:4
13
作者 王婷 黎婉雯 +3 位作者 许丹丹 吴轩民 曹丽伟 孟建新 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1184-1195,共12页
particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -18... particle size (5.0 nm), large specific surface area (213.45 m1 2/g), and efficient response to broadband light over the entire ultraviolet-visible spectrum with a narrow band gap of 1.84 eV. In addition, TiO2 -180℃ exhibited the optimal reaction rate constant for the degradation of methylene blue (0.08287 mg/(Lmin)), which is six times higher than that of the mixed rutile/anatase phase TiO2 photocatalytic standard P25 (0.01342 mg/(L min)). Furthermore, cycling photodegradation ex-periments confirmed the stability and reusability of this catalyst. The unique physicochemical properties resulting from the low-temperature preparation of TiO2 -180℃, including its broadband visible absorption associated with a high concentration of oxygen vacancies, large surface area, and enriched surface -OH/H2O may be responsible for this excellent photocatalytic performance. The use of as-prepared TiO2 -180℃ for practical applications is expected after further optimization. 展开更多
关键词 Titanium dioxide Visible light Broadband absorption Oxygen vacancy Photocatalytic degradation
下载PDF
Fabrication and photodegradation properties of TiO_2 nanotubes on porous Ti by anodization 被引量:8
14
作者 曹国剑 崔博 +3 位作者 王文奇 唐光泽 冯义成 王丽萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2581-2587,共7页
Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whe... Both Ti foil and porous Ti were anodized in 0.5%HF and in ethylene glycol electrolyte containing 0.5%NH4F(mass fraction) separately. The results show that TiO2 nanotubes can be formed on Ti foil by both processes, whereas TiO2 nanotubes can be formed on porous Ti only in the second process. The overhigh current density led to the failure of the formation nanotubes on porous Ti in 0.5%HF electrolyte. TiO2 nanotubes were characterized by SEM and XRD. TiO2 nanotubes on porous Ti were thinner than those on Ti foil. Anatase was formed when TiO2 nanotubes were annealed at 400 °C and fully turned into rutile at 700 °C. To obtain good photodegradation, the optimal heat treatment temperature of TiO2 nanotubes was 450 °C. The porosity of the substrates influenced photodegradation properties. TiO2 nanotubes on porous Ti with 60% porosity had the best photodegradation. 展开更多
关键词 TiO_2 nanotubes anodization PHOTODEGRADATION porous Ti
下载PDF
Preparation of three-dimensional interconnected mesoporous anatase TiO_2-SiO_2 nanocomposites with high photocatalytic activities 被引量:4
15
作者 董维阳 姚有为 +2 位作者 孙尧俊 华伟明 庄国顺 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期846-854,共9页
In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mes... In this article, we report the preparation of a three-dimensional(3D) interconnected mesoporous anatase TiO2-SiO2 nanocomposite. The nanocomposite was obtained by using an ordered two-dimensional(2D) hexagonal mesoporous anatase 70 TiO2-30 SiO2-950 nanocomposite(crystallized at 950 °C for 2 h) as a precursor, NaO H as an etchant of SiO2 via a "creating mesopores in the pore walls" approach. Our strategy adopts mild conditions of creating pores such as diluted NaO H solution, appropriate temperature and solid/liquid ratio, etc. aiming at ensuring the integrities of mesopores architecture and anatase nanocrystals. XRD, TEM and N2 sorption techniques have been used to systematically investigate the physico-chemical properties of the nanocomposites. The results show that the intrawall mesopores are highly dense and uniform(average pore size 3.6 nm), and highly link the initial mesochannels in a 3D manner while retaining mesostructural integrity. There is no significant change to either crystallinity or size of the anatase nanocrystals before and after creating the intrawall mesopores. The photocatalytic degradation rates of rhodamine B(RhB, 0.303 min^–1) and methylene blue(MB, 0.757 min^–1) dyes on the resultant nanocomposite are very high, which are 5.1 and 5.3 times that of the precursor; even up to 16.5 and 24.1 times that of Degussa P25 photocatalyst, respectively. These results clearly demonstrate that the 3D interconnected mesopores structure plays an overwhelming role to the increments of activities. The 3D mesoporous anatase TiO2-SiO2 nanocomposite exhibits unexpected-high degradation activities to RhB and MB in the mesoporous metal oxide-based materials reported so far. Additionally, the nanocomposite is considerably stable and reusable. We believe that this method would pave the way for the preparation of other 3D highly interconnected mesoporous metal oxide-based materials with ultra-high performance. 展开更多
关键词 PREPARATION Mesoporous anatase crystal-silica nanocomposite Three dimensional interconnected mesopores architecture Photocatalytic degradation Organic pollutants
下载PDF
Photocatalytic Degradation of Water-Soluble Dyes by LaCoO_3 被引量:2
16
作者 杨秋华 傅希贤 秦永宁 《Transactions of Tianjin University》 EI CAS 2002年第2期83-86,共4页
Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes we... Pervoskite type oxides LaCoO 3 was prepared by citrate method with the granula of 20 nm-30 nm. With a fluorescent Hg lamp or sunlight as irradiator, the degradation experiments of various water soluble dyes were carried out in the suspension system of LaCoO 3 . The results show that the pervoskite type oxide LaCoO 3 has good photocatalytic activity.Studied by X ray photoelectron spectroscopy and photoacoustic spectra, its photocatalytic activity is found to be related with factors such as the d electron structure of ion Co 3+ ,Co—O binding energy and adsorbed oxygen on the surface etc. 展开更多
关键词 rare earths water soluble dye pervoskite type LaCoO 3 photocatalytic degradation
下载PDF
Synthesis of Cu2O/Ag Composite with Visible Light Photocatalytic Degradation Activity for in situ SERS Analysis 被引量:2
17
作者 吴义平 吴边边 唐祥虎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第2期166-172,I0001,共8页
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a fa... A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS. 展开更多
关键词 Cuprous oxide Silver nanoparticle Surface-enhanced Raman scattering Photo-catalytic degradation In situ detection
下载PDF
Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide 被引量:5
18
作者 谢国红 常欣 +2 位作者 Bal Ram Adhikari Sapanbir S.Thind 陈爱成 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1062-1069,共8页
Electrochemically treated nanoporous TiO2 was employed as a novel electrode to assist in the pho- toelectrochemical degradation of acetaminophen and valacyclovir. The prepared electrode was characterized by scanning e... Electrochemically treated nanoporous TiO2 was employed as a novel electrode to assist in the pho- toelectrochemical degradation of acetaminophen and valacyclovir. The prepared electrode was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Cyclic voltammetry (CV), Mott-Schottky plots, ultraviolet-visible light (UV-vis) absorbance spec- troscopy, and a total organic carbon (TOC) analyzer were employed to investigate the photoelec- trochemical degradation of acetaminophen and valacyclovir. The results indicated no obvious re- moval of acetaminophen and valacyclovir over 3 h when separate photochemical degradation and electrochemical oxidation were employed. In contrast, acetaminophen and valacyclovir were rapid- ly eliminated via photoelectrochemical degradation. In addition, electrochemically treated nanopo~ rous TiO2 electrodes significantly enhanced the efficacy of the photoelectrochemical degradation of acetaminophen and valacyclovir, by 86.96% and 53.12%, respectively, when compared with un- treated nanoporous TiO2 electrodes. This enhanced performance may have been attributed to the formation of Ti3~, Ti2~, and oxygen vacancies, as well as an improvement in conductivity during the electrochemical reduction process. The effect of temperature was further investigated, where the activation energy of the photoelectrochemical degradation of acetaminophen and valacyclovir was determined to be 9.62 and 18.42 kJ/mol, respectively. 展开更多
关键词 Photoelectrochemical degradationNanoporous titanium dioxideAcetaminophenValacyclovirActivation energy
下载PDF
Comparative Studies on Degradation of Methyl Orange by Nanostructured Zinc and Zinc Oxide Films
19
作者 吴炳俊 郝常山 +1 位作者 谢斌 李明 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第5期615-620,622,共7页
Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photo... Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency. 展开更多
关键词 Methyl orange ZINC ZnOx ZNO Reductive degradation PHOTOCATALYSIS
下载PDF
Photocatalytic Degradation of Phenol over MWCNTs-TiO2 Composite Catalysts with Different Diameters
20
作者 李晨 汪文栋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第4期423-428,448,共7页
Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen ads... Titania-based composite catalysts were prepared through a sol-gel route employing multi-walled carbon nanotubes with different diameters. The materials were characterized using thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy, and diffuse reflectance UV-Vis absorption spectra. The application of the catalysts to photocatalytic degradation of phenol was tested under UV-Vis irradiation. A synergetic effect on phenol removal was observed in case of composite catalysts, which was evaluated in terms of apparent rate constant, total organic carbon removal and photonic efficiency. 展开更多
关键词 Photocatalytic degradation PHENOL Titanium dioxide Multi-walled carbon nanotube Composite catalyst
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部