期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
灰度一致纹理图像的光参数估算方法 被引量:2
1
作者 孙玉娟 董军宇 王增锋 《激光与光电子学进展》 CSCD 北大核心 2017年第6期104-111,共8页
从单幅图像估算光照参数时未知条件太多,而采用多幅输入图像的方法估算光照参数,虽然精度较高,但增加了输入数据的复杂度。提出灰度一致图像的光参数估算方法,能够从输入的单幅图像准确地估算光照参数。该方法通过探测输入图像的最大亮... 从单幅图像估算光照参数时未知条件太多,而采用多幅输入图像的方法估算光照参数,虽然精度较高,但增加了输入数据的复杂度。提出灰度一致图像的光参数估算方法,能够从输入的单幅图像准确地估算光照参数。该方法通过探测输入图像的最大亮度变化方向估算光照的方位角;通过检测输入图像与虚拟光环境下的随机纹理的相似性估算光照的翘角。对Photex纹理库中的24类图像(共142幅图像)进行了实验,实验结果表明,该算法对于表面灰度一致图像的光参数估算具有较高的准确率。 展开更多
关键词 图像处理 光参数估算 密度参数 灰度一致纹理 朗伯模型
原文传递
Comparison Between Radial Basis Function Neural Network and Regression Model for Estimation of Rice Biophysical Parameters Using Remote Sensing 被引量:10
2
作者 YANG Xiao-Hua WANG Fu-Min +4 位作者 HUANG Jing-Feng WANG Jian-Wen WANG Ren-Chao SHEN Zhang-Quan WANG Xiu-Zhen 《Pedosphere》 SCIE CAS CSCD 2009年第2期176-188,共13页
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra... The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters. 展开更多
关键词 biophysical parameters radial basis function regression model remote sensing RICE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部