To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders ...To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.展开更多
Accurate assessment of surface suspended sediment concentration (SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cub...Accurate assessment of surface suspended sediment concentration (SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continu- ous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/1 were carried out using an AvaField-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance (Rrs) was obtained in the spectral range of 726-900 nm. At SSSC greater than 2700 mg/L, the 740-900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed (R2 = 0.992). The novel cubic model, which used the ratio of a near-infrared (NIR) band (740-900 nm) to a visible band (400-600 nm) as factors, provided robust quantifica- tion of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/1, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sedi- ment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.展开更多
Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect ...Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.展开更多
From an ordinary condition,using a full three-dimensional model theory and an infinite perturbation expansion method,an exact solution of the reflection coefficient for the coated narrow stripe-geometry optical wavegu...From an ordinary condition,using a full three-dimensional model theory and an infinite perturbation expansion method,an exact solution of the reflection coefficient for the coated narrow stripe-geometry optical waveguide devices has been derived.All six components and the vector property of the electromagnetic field have been considered.The results are suitable for the symmetric and asymmetric waveguides.展开更多
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra...The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.展开更多
Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflect...Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflectance data were analyzed for their capability to predict rice biophysical parameters,comprising leaf area index (LAI;m-2 green leaf area m-2 soil) and green leaf chlorophyll density (GLCD;mg chlorophyll m 2 soil),using stepwise multiple regression (SMR) models and support vector machines (SVMs).Four transformations of the rice canopy data were made,comprising reflectances (R),first-order derivative reflectances (D1),second-order derivative reflectances (D2),and logarithm transformation of reflectances (LOG).The polynomial kernel (POLY) of the SVM using R was the best model to predict rice LAI,with a root mean square error (RMSE) of 1.0496 LAI units.The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD,with an RMSE of 523.0741 mg m-2.The SVM approach was not only superior to SMR models for predicting the rice biophysical parameters,but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data.展开更多
Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a n...Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a normalized difference salinity index (NDSI), partial least squares regression (PLSR), and bagging PLSR. Soil spectral reflectance of dried, ground, and sieved soil samples containing varying amounts of EC was measured using an ASD FieldSpec spectrometer in a darkroom. Predictive models were computed using a training dataset. An independent validation dataset was used to validate the models. The results showed that good predictions could be made based on bagging PLSR using first derivative reflectance (validation R2 = 0.85), PLSR using untransformed reflectance (validation R2 = 0.70), NDSI (validation R2 = 0.65), and the untransformed individual band at 2257 nm (validation R2 = 0.60) predictive models. These suggested the potential of mapping soil salinity using airborne and/or satellite hyperspectral data during dry seasons.展开更多
Row sowing is a basic crop sowing method in China,and thus an accurate Bidirectional Reflectance Distribution Function (BRDF) model of row crops is the foundation for describing the canopy bidirectional reflectance ch...Row sowing is a basic crop sowing method in China,and thus an accurate Bidirectional Reflectance Distribution Function (BRDF) model of row crops is the foundation for describing the canopy bidirectional reflectance characteristics and estimating crop ecological parameters.Because of the macroscopically geometric difference,the row crop is usually regarded as a transition between continuous and discrete vegetation in previous studies.Were row treated as the unit for calculating the four components in the Geometric Optical model (GO model),the formula would be too complex and difficult to retrieve.This study focuses on the microscopic structure of row crops.Regarding the row crop as a result of leaves clumped at canopy scale,we apply clumping index to link continuous vegetation and row crops.Meanwhile,the formula of clumping index is deduced theoretically.Then taking leaf as the basic unit,we calculate the four components of the GO model and develop a BRDF model for continuous vegetation,which is gradually extended to the unified BRDF model for row crops.It is of great importance to introduce clumping index into BRDF model.In order to evaluate the performance of the unified BRDF model,the canopy BRDF data collected in field experiment,"Watershed Allied Telemetry Experiment Research (WATER)",from May 30th to July 1st,2008 are used as the validation dataset for the simulated values.The results show that the unified model proposed in this paper is able to accurately describe the non-isotropic characteristics of canopy reflectance for row crops.In addition,the model is simple and easy to retrieve.In general,there is no irreconcilable conflict between continuous and discrete vegetation,so understanding their common and individual characteristics is advantageous for simulating canopy BRDF.It is proven that the four components of the GO model is the basic motivational factor for bidirectional reflectance of all vegetation types.展开更多
A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with ...A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with a single-mode fiber(SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.展开更多
基金National Key Technologies R&D Program Foundation of China (Grant No. 2006BAK04A11)
文摘To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers.
基金Under the auspices of National Key R&D Program of China(No.2017YFC0505902)Project of the Cultivation Plan of Superior Discipline Talent Teams of Universities in Shandong Province,National Natural Science Foundation of China(No.41471005,41271016)
文摘Accurate assessment of surface suspended sediment concentration (SSSC) in estuary is essential to address several important issues: erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continu- ous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/1 were carried out using an AvaField-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance (Rrs) was obtained in the spectral range of 726-900 nm. At SSSC greater than 2700 mg/L, the 740-900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed (R2 = 0.992). The novel cubic model, which used the ratio of a near-infrared (NIR) band (740-900 nm) to a visible band (400-600 nm) as factors, provided robust quantifica- tion of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/1, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sedi- ment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.
基金National Natural Science Foundation of China(No.41401002)Jilin Province Science Foundation for Youths(No.20160520077JH)
文摘Spectral index methodology has been widely used in Leaf Area Index(LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers(SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition(VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index(NDVI), Modified Simple Ratio Indices(MSRI) and Triangle Vegetation Index(TVI), although the coefficient of determination R^2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.
文摘From an ordinary condition,using a full three-dimensional model theory and an infinite perturbation expansion method,an exact solution of the reflection coefficient for the coated narrow stripe-geometry optical waveguide devices has been derived.All six components and the vector property of the electromagnetic field have been considered.The results are suitable for the symmetric and asymmetric waveguides.
基金Project supported by the National Natural Science Foundation of China (No.40571115)the National High Tech-nology Research and Development Program (863 Program) of China (Nos.2006AA120101 and 2007AA10Z205)
文摘The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40571115 and 40271078)the National Hi-Tech Research and Development Program of China(Grant No. 2006AA10Z203)
文摘Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application.Four different transformations of the reflectance data were analyzed for their capability to predict rice biophysical parameters,comprising leaf area index (LAI;m-2 green leaf area m-2 soil) and green leaf chlorophyll density (GLCD;mg chlorophyll m 2 soil),using stepwise multiple regression (SMR) models and support vector machines (SVMs).Four transformations of the rice canopy data were made,comprising reflectances (R),first-order derivative reflectances (D1),second-order derivative reflectances (D2),and logarithm transformation of reflectances (LOG).The polynomial kernel (POLY) of the SVM using R was the best model to predict rice LAI,with a root mean square error (RMSE) of 1.0496 LAI units.The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD,with an RMSE of 523.0741 mg m-2.The SVM approach was not only superior to SMR models for predicting the rice biophysical parameters,but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data.
基金Project supported by the Agricultural Research Council-Institute for Soil, Climate and Water (ARC-ISCW) of South Africa (No.GW51/072)the National Research Foundation (NRF) of South Africa (No.GW 51/083/01)the Water Research Commission (WRC)of South Africa (No.K5/1849)
文摘Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a normalized difference salinity index (NDSI), partial least squares regression (PLSR), and bagging PLSR. Soil spectral reflectance of dried, ground, and sieved soil samples containing varying amounts of EC was measured using an ASD FieldSpec spectrometer in a darkroom. Predictive models were computed using a training dataset. An independent validation dataset was used to validate the models. The results showed that good predictions could be made based on bagging PLSR using first derivative reflectance (validation R2 = 0.85), PLSR using untransformed reflectance (validation R2 = 0.70), NDSI (validation R2 = 0.65), and the untransformed individual band at 2257 nm (validation R2 = 0.60) predictive models. These suggested the potential of mapping soil salinity using airborne and/or satellite hyperspectral data during dry seasons.
基金supported by National Natural Science Foundation of China (Grant Nos. 91025006, 40730525, 40871186 and 40801125)Special Funds for National High Technology Research and Development Program of China (Grant Nos. 2009AA12Z143 and 2009A122103)+1 种基金Major State Basic Research Project (973) (Grant No. 2007CB714402)"Simultaneous Remote Sensing and Ground-based Experiment in Heihe River Basin and Comprehensive Platform Construction" in the Chinese Academy of Sciences’ Action-Plan for West Development (the second phase) (Grant No. KZCX2-XB2-09)
文摘Row sowing is a basic crop sowing method in China,and thus an accurate Bidirectional Reflectance Distribution Function (BRDF) model of row crops is the foundation for describing the canopy bidirectional reflectance characteristics and estimating crop ecological parameters.Because of the macroscopically geometric difference,the row crop is usually regarded as a transition between continuous and discrete vegetation in previous studies.Were row treated as the unit for calculating the four components in the Geometric Optical model (GO model),the formula would be too complex and difficult to retrieve.This study focuses on the microscopic structure of row crops.Regarding the row crop as a result of leaves clumped at canopy scale,we apply clumping index to link continuous vegetation and row crops.Meanwhile,the formula of clumping index is deduced theoretically.Then taking leaf as the basic unit,we calculate the four components of the GO model and develop a BRDF model for continuous vegetation,which is gradually extended to the unified BRDF model for row crops.It is of great importance to introduce clumping index into BRDF model.In order to evaluate the performance of the unified BRDF model,the canopy BRDF data collected in field experiment,"Watershed Allied Telemetry Experiment Research (WATER)",from May 30th to July 1st,2008 are used as the validation dataset for the simulated values.The results show that the unified model proposed in this paper is able to accurately describe the non-isotropic characteristics of canopy reflectance for row crops.In addition,the model is simple and easy to retrieve.In general,there is no irreconcilable conflict between continuous and discrete vegetation,so understanding their common and individual characteristics is advantageous for simulating canopy BRDF.It is proven that the four components of the GO model is the basic motivational factor for bidirectional reflectance of all vegetation types.
基金supported by the National Natural Science Foundation of China(Nos.61205068 and 61475133)the College Youth Talent Project of Hebei Province(No.BJ2014057)"Xin Rui Gong Cheng"Talent Project and the Excellent Youth Funds for School of Information Science and Engineering in Yanshan University(No.2014201)
文摘A novel miniature Fabry-Perot interferometric(FPI) temperature sensor is proposed and demonstrated experimentally. The modal interferometer is fabricated by just splicing a section of photonic crystal fiber(PCF) with a single-mode fiber(SMF). The air holes of the PCF are fully collapsed by the discharge arc during the splicing procedure to enhance the reflection coefficient of the splicing point. The transmission spectra with different temperatures are measured, and the experimental results show that the linear response of 11.12 pm/°C in the range of 30–80 °C is obtained. This sensor has potential applications in temperature measurement field.