In this paper,we numerically study chaotic synchronization communication system based on incoherent optical feedback and incoherent optical injection.The characteristics of the system,such as synchronization time,sync...In this paper,we numerically study chaotic synchronization communication system based on incoherent optical feedback and incoherent optical injection.The characteristics of the system,such as synchronization time,synchronization error,chaos shift keying encoding/decoding and modulation rate are analyzed.The results of simulation show that the system has good synchronization quality and good abilities of robust secure.The synchronization time is 1ns and the chaos shift keying encoding can reach a high rate of 1 Gbit/s.The system has a good ability of robust secure.It proves the feasibility of the optical secure communication.展开更多
A distributed feedback fiber laser based Bragg grating vibration sensor system is proposed.Demodulated by using an unbalanced M-Z interferometer,experiment demonstrates that the system runs at a sensing sensitivity of...A distributed feedback fiber laser based Bragg grating vibration sensor system is proposed.Demodulated by using an unbalanced M-Z interferometer,experiment demonstrates that the system runs at a sensing sensitivity of about 257.2 rad·s2/m and a resolution of 4.2×10-5 m/s2 for monitoring acceleration.Experimental results show that the phase-shift changes with the acceleration linearly.展开更多
This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete a...This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).展开更多
基金Supported by Shanghai Leading Academic Discipline Project ,Pro-ject Number :T0501
文摘In this paper,we numerically study chaotic synchronization communication system based on incoherent optical feedback and incoherent optical injection.The characteristics of the system,such as synchronization time,synchronization error,chaos shift keying encoding/decoding and modulation rate are analyzed.The results of simulation show that the system has good synchronization quality and good abilities of robust secure.The synchronization time is 1ns and the chaos shift keying encoding can reach a high rate of 1 Gbit/s.The system has a good ability of robust secure.It proves the feasibility of the optical secure communication.
基金supported by the Science Fund for Young Scholars of Heilongjiang University,China(No.QL200901)
文摘A distributed feedback fiber laser based Bragg grating vibration sensor system is proposed.Demodulated by using an unbalanced M-Z interferometer,experiment demonstrates that the system runs at a sensing sensitivity of about 257.2 rad·s2/m and a resolution of 4.2×10-5 m/s2 for monitoring acceleration.Experimental results show that the phase-shift changes with the acceleration linearly.
文摘This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).