The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain...The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.展开更多
Using Harrison's model and anisotropic parabolic approximation,the band structure of In1- x- y Gay Alx As compressively strained quantum wells is calculated.To design lasers with1.55μm wavelength,it is necessary...Using Harrison's model and anisotropic parabolic approximation,the band structure of In1- x- y Gay Alx As compressively strained quantum wells is calculated.To design lasers with1.55μm wavelength,it is necessary to an- alyze the well width,differential gain,transparency carrier density and the characteristic gain for an arbitrary com- position.Some useful empirical formulas are also presented.展开更多
The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed...The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.展开更多
The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxat...The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.展开更多
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of pla...The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.展开更多
GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed r...GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.展开更多
Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyre...Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.展开更多
The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. The...The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares.展开更多
The binding of pefloxacin mesylate (PFLX) to bovine lactoferrin (BLf) and human serum albumin (HSA) in dilute aqueous solution was studied using fluorescence spectra and absorbance spectra. The binding constant ...The binding of pefloxacin mesylate (PFLX) to bovine lactoferrin (BLf) and human serum albumin (HSA) in dilute aqueous solution was studied using fluorescence spectra and absorbance spectra. The binding constant K and the binding sites n were obtained by fluorescence quenching method. The binding distance r and energy-transfer efficiency E between pefloxacin mesylate and bovine lactoferrin as well as human serum albumin were also obtained according to the mechanism of Forster-type dipole-dipole nonradiative energy-transfer. The effects of pefloxacin mesylate on the conformations of bovine lactoferrin and human serum albumin were also analyzed using synchronous fluorescence spectroscopy.展开更多
A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric qu...A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region,which may be positive or negative.The CSQPIM model is obtained by combining the positive and negative CSQPIM units.Then,the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units.The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face.Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier,which can create the CSQPIM image-based classification(CSQPIMC).Furthermore,the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model.Finally,the experimental results on the Extended Yale B,CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.展开更多
A scheme is proposed for the generation of entangled states for multiple atoms trapped in a cavity by detecting photon decay. The scheme is valid no matter when the effective atom-cavity coupling strength is larger th...A scheme is proposed for the generation of entangled states for multiple atoms trapped in a cavity by detecting photon decay. The scheme is valid no matter when the effective atom-cavity coupling strength is larger than the cavity decay rate or not, which is of importance in view of experiment. The fidelity of entanglement is insensitive to the inefticiency of the photo-detector. The scheme does not require a photon to be initially injected into the cavity.展开更多
To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),...To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).展开更多
In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new...In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new Darboux transformation, some new soliton-like solutions of the (1+1)-dimensional HBK system are obtained.展开更多
文摘The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.
文摘Using Harrison's model and anisotropic parabolic approximation,the band structure of In1- x- y Gay Alx As compressively strained quantum wells is calculated.To design lasers with1.55μm wavelength,it is necessary to an- alyze the well width,differential gain,transparency carrier density and the characteristic gain for an arbitrary com- position.Some useful empirical formulas are also presented.
文摘The distributed strain sensor has significant application in real time measurement of strain status for large and important engineering structures such as aircraft, bridge and dam. In this paper, a quasi distributed optical fiber strain sensor system is set up using optical time domain reflect technique. The local strain sensors based on a novel microbend configuration are designed and applied to measure local strains along the optical fiber. As the result of the experimental research, the microbend sensors show high sensitivity, good linearity and repeatability in certain operation range.
文摘The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.
文摘The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
文摘GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.
文摘Based on the Radon transform and fractional Fourier transform we introduce the fractional Radon trans-formation (FRT). We identify the transform kernel for FRT. The FRT of Wigner operator is derived, which naturallyreduces to the projector of eigenvector of the rotated quadrature in the usual Radon transform case.
文摘The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares.
基金Project (No. 20173050) supported by the National Natural ScienceFoundation of China
文摘The binding of pefloxacin mesylate (PFLX) to bovine lactoferrin (BLf) and human serum albumin (HSA) in dilute aqueous solution was studied using fluorescence spectra and absorbance spectra. The binding constant K and the binding sites n were obtained by fluorescence quenching method. The binding distance r and energy-transfer efficiency E between pefloxacin mesylate and bovine lactoferrin as well as human serum albumin were also obtained according to the mechanism of Forster-type dipole-dipole nonradiative energy-transfer. The effects of pefloxacin mesylate on the conformations of bovine lactoferrin and human serum albumin were also analyzed using synchronous fluorescence spectroscopy.
基金The National Natural Science Foundation of China(No.61802203)the Natural Science Foundation of Jiangsu Province(No.BK20180761)+1 种基金China Postdoctoral Science Foundation(No.2019M651653)Postdoctoral Research Funding Program of Jiangsu Province(No.2019K124).
文摘A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region,which may be positive or negative.The CSQPIM model is obtained by combining the positive and negative CSQPIM units.Then,the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units.The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face.Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier,which can create the CSQPIM image-based classification(CSQPIMC).Furthermore,the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model.Finally,the experimental results on the Extended Yale B,CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10225421 and the Funds from Fuzhou University
文摘A scheme is proposed for the generation of entangled states for multiple atoms trapped in a cavity by detecting photon decay. The scheme is valid no matter when the effective atom-cavity coupling strength is larger than the cavity decay rate or not, which is of importance in view of experiment. The fidelity of entanglement is insensitive to the inefticiency of the photo-detector. The scheme does not require a photon to be initially injected into the cavity.
基金Project supported by the National Natural Science Foundation of China (No. 40271078)the Basic Research Program of Science and Technology Department of China (No. 2003DEA2C010-13)
文摘To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).
基金The project partially supported by the State Key Basic Pesearch Program of China under Grant No. 2004CB318000
文摘In this letter, we construct a kind of new Darboux transformation for the (1+1)-dimensional higher-order Broer-Kaup (HBK) system with the help of a gauge transformation of a spectral problem. By applying this new Darboux transformation, some new soliton-like solutions of the (1+1)-dimensional HBK system are obtained.