The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the...The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.展开更多
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOO...A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.展开更多
Molecular catalysts for H2-evolution are of interest for their integration into light-harvesting complexes for photocatalytic water splitting.Here,we report the meso-tetra(4-carboxyphenyl)porphine[(TCPP)Pt^(Ⅱ)]comple...Molecular catalysts for H2-evolution are of interest for their integration into light-harvesting complexes for photocatalytic water splitting.Here,we report the meso-tetra(4-carboxyphenyl)porphine[(TCPP)Pt^(Ⅱ)]complex as a molecular H2-evolving photocatalyst using chloranilic acid(CA)as a sacrificial electron donor,the choice of which is critical to the stability of the photocatalyst.When triethanolamine was used,[(TCPP)Pt^(Ⅱ)]decomposed to form Pt nanoparticles.Density functional theory calculations together with evidence from electrochemical and spectroscopic analyses suggested that the catalysis was possibly initiated by a proton-coupled electron transfer(PCET)to form[(TCPP)Pt^(Ⅰ)]-N-H,followed by another electron injection and protonation to form a[(TCPP)Pt^(Ⅱ)-hydride]-N-H intermediate that can release H2.As the whole catalytic cycle involves the injection of multiple electrons,a light-harvesting network should be helpful by providing multiple photo-induced electrons.Thus,we integrated this molecular catalyst into a light-harvesting metal-organic framework to boost its activity by~830 times.This work presents a mechanistic study of the photocatalytic H2 evolution and energy transfer and highlights the importance of a light-harvesting network for multiple electron injections.展开更多
A novel bifunctional dye containing spirobenzopyran and cinnamoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated. The colo...A novel bifunctional dye containing spirobenzopyran and cinnamoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated. The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.展开更多
A green-emitting phosphor Ca(Tb1-xLax)4(SiO4)3O (CTLS) was synthesized by a solid state reaction. X-ray diffraction, photoluminescence (PL) spectroscopy, reflectance spectra and chromaticity coordinates were c...A green-emitting phosphor Ca(Tb1-xLax)4(SiO4)3O (CTLS) was synthesized by a solid state reaction. X-ray diffraction, photoluminescence (PL) spectroscopy, reflectance spectra and chromaticity coordinates were carried out in this study. The CaTb4(SiO4)3O host has been known to crystallize in a hexagonal structure with disordering found in the Ca2+ and Tb3+ cation sites. The phosphors exhibited highly green-emitting band centered at 541 nm under ultraviolet excitation, which corresponds to the 5D4→7F5 transition. The optimal doping concentration of Tb3+ was observed to be at 20 mol%, and the PL intensity was found to decline dramatically when the content of Tb3+ exceeds 20m01% due to concentration quenching. Based on the results, we are currently evaluating the potential application of Ca(Tb,La)4(SiO4)30 as a new green-emitting near-UV LED convertible phosphor.展开更多
Objective: Infection of human papillomavirus in condylomaacuminatum (CA) was detected by real time fluorescencequantitative PCR (FQ-PCR) technique. Methods: Specimens of CA-DNA quantification from 94cases were examine...Objective: Infection of human papillomavirus in condylomaacuminatum (CA) was detected by real time fluorescencequantitative PCR (FQ-PCR) technique. Methods: Specimens of CA-DNA quantification from 94cases were examined by real time FQ-PCR technique and 32cases were compared with the same method after 10-daystreatment. Results: CA-DNA was found in all patients, with an averageof 4.0×10^6 copies/ul. After 10 days of treatment, the averagewas 2.1×10^5 copies/ul. There was a significant difference inthe average amount of CA-DNA before and after thetreatment. Conclusion: Real time FQ-PCR is a good method forexamining CA-DNA amount and it can direct the treatment of CA.展开更多
A visible light-mediated approach for the preparation of α-bromo-α,β-unsaturated ketones and aldehydes was developed. In comparison to traditional methods that generally take two steps to afford the above compounds...A visible light-mediated approach for the preparation of α-bromo-α,β-unsaturated ketones and aldehydes was developed. In comparison to traditional methods that generally take two steps to afford the above compounds, this protocol was highlighted by its operational simplicity, avoiding using hazardous bromine and mild reaction conditions.展开更多
SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet(UV) and blue light, and the emission peaks are assign...SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet(UV) and blue light, and the emission peaks are assigned to the transitions of 4G5/2-6H5/2(563 nm), 4G5/2-6H7/2(597 nm and 605 nm) and 4G5/2-6H9/2(644 nm and 653 nm). The emission intensities of SrZn2(PO4)2:Sm3+ are influenced by Sm3+ concentration, and the concentration quenching effect of SrZn2(PO4)2:Sm3+ is also observed. When doping A+(A=Li, Na and K) ions, the emission intensity of SrZn2(PO4)2:Sm3+ can be obviously enhanced. The Commission Internationale de l'Eclairage(CIE) color coordinates of SrZn2(PO4)2:Sm3+ locate in the orange-red region. The results indicate that the phosphor has a potential application in white light emitting diodes(LEDs).展开更多
文摘The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.
文摘A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.
文摘Molecular catalysts for H2-evolution are of interest for their integration into light-harvesting complexes for photocatalytic water splitting.Here,we report the meso-tetra(4-carboxyphenyl)porphine[(TCPP)Pt^(Ⅱ)]complex as a molecular H2-evolving photocatalyst using chloranilic acid(CA)as a sacrificial electron donor,the choice of which is critical to the stability of the photocatalyst.When triethanolamine was used,[(TCPP)Pt^(Ⅱ)]decomposed to form Pt nanoparticles.Density functional theory calculations together with evidence from electrochemical and spectroscopic analyses suggested that the catalysis was possibly initiated by a proton-coupled electron transfer(PCET)to form[(TCPP)Pt^(Ⅰ)]-N-H,followed by another electron injection and protonation to form a[(TCPP)Pt^(Ⅱ)-hydride]-N-H intermediate that can release H2.As the whole catalytic cycle involves the injection of multiple electrons,a light-harvesting network should be helpful by providing multiple photo-induced electrons.Thus,we integrated this molecular catalyst into a light-harvesting metal-organic framework to boost its activity by~830 times.This work presents a mechanistic study of the photocatalytic H2 evolution and energy transfer and highlights the importance of a light-harvesting network for multiple electron injections.
文摘A novel bifunctional dye containing spirobenzopyran and cinnamoyl moiety has been prepared and its photochromic behavior following irradiation at different wavelengths of monochrome UV light was investigated. The colourless bifunctional dye in film or solution exhibits unusual photochromism through structural and geometrical transformation from spirobenzopyran to merocyanine accompanying with photocrosslinking reaction in cinnamoyl moieties. Two kinds of photochemical reaction were achieved by irradiation at the different wavelengths of monochrome UV light (275 nm, 365 nm) selectively. The photochromic process of the bifunctional dye was discussed and the dynamic behaviors of the decolorization process were investigated.
文摘A green-emitting phosphor Ca(Tb1-xLax)4(SiO4)3O (CTLS) was synthesized by a solid state reaction. X-ray diffraction, photoluminescence (PL) spectroscopy, reflectance spectra and chromaticity coordinates were carried out in this study. The CaTb4(SiO4)3O host has been known to crystallize in a hexagonal structure with disordering found in the Ca2+ and Tb3+ cation sites. The phosphors exhibited highly green-emitting band centered at 541 nm under ultraviolet excitation, which corresponds to the 5D4→7F5 transition. The optimal doping concentration of Tb3+ was observed to be at 20 mol%, and the PL intensity was found to decline dramatically when the content of Tb3+ exceeds 20m01% due to concentration quenching. Based on the results, we are currently evaluating the potential application of Ca(Tb,La)4(SiO4)30 as a new green-emitting near-UV LED convertible phosphor.
文摘Objective: Infection of human papillomavirus in condylomaacuminatum (CA) was detected by real time fluorescencequantitative PCR (FQ-PCR) technique. Methods: Specimens of CA-DNA quantification from 94cases were examined by real time FQ-PCR technique and 32cases were compared with the same method after 10-daystreatment. Results: CA-DNA was found in all patients, with an averageof 4.0×10^6 copies/ul. After 10 days of treatment, the averagewas 2.1×10^5 copies/ul. There was a significant difference inthe average amount of CA-DNA before and after thetreatment. Conclusion: Real time FQ-PCR is a good method forexamining CA-DNA amount and it can direct the treatment of CA.
基金supported by the National Natural Science Foundation of China(2100201821072038+3 种基金2147203021302029)the State Key Laboratory of Urban Water Resource and Environment(2015DX01)the Fundamental Research Funds for the Central Universities(HIT.BRETIV.201310)
文摘A visible light-mediated approach for the preparation of α-bromo-α,β-unsaturated ketones and aldehydes was developed. In comparison to traditional methods that generally take two steps to afford the above compounds, this protocol was highlighted by its operational simplicity, avoiding using hazardous bromine and mild reaction conditions.
基金supported by the National Natural Science Foundation of China(No.50902042)the Natural Science Foundation of Hebei Province in China(Nos.A2014201035 and E2014201037)the Education Office Research Foundation of Hebei Province in China(Nos.ZD2014036 and QN2014085)
文摘SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet(UV) and blue light, and the emission peaks are assigned to the transitions of 4G5/2-6H5/2(563 nm), 4G5/2-6H7/2(597 nm and 605 nm) and 4G5/2-6H9/2(644 nm and 653 nm). The emission intensities of SrZn2(PO4)2:Sm3+ are influenced by Sm3+ concentration, and the concentration quenching effect of SrZn2(PO4)2:Sm3+ is also observed. When doping A+(A=Li, Na and K) ions, the emission intensity of SrZn2(PO4)2:Sm3+ can be obviously enhanced. The Commission Internationale de l'Eclairage(CIE) color coordinates of SrZn2(PO4)2:Sm3+ locate in the orange-red region. The results indicate that the phosphor has a potential application in white light emitting diodes(LEDs).