The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical res...The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measurements. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Fhrthermore, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.展开更多
We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissip...We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissipation theories, in either the chronological ordering prescription or the correlated driving-dissipation form. Analytical results can be derived for the linear absorption of two-state systems. Assessments on their applicability are then made by comparison to the exact results.展开更多
The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient a...The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures.展开更多
The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values i...The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared(NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths(412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scatteringcorrection methods.展开更多
Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, w...Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the closed-orbit theory and is of potential experimental interest.展开更多
The photoabsorption spectra have been calculated for Sis and SilO (n ≤ 5) clusters using time-dependent density-function theory. Our studies suggest that Sin-1 O clusters are relatively stable than those of corresp...The photoabsorption spectra have been calculated for Sis and SilO (n ≤ 5) clusters using time-dependent density-function theory. Our studies suggest that Sin-1 O clusters are relatively stable than those of corresponding Sis clusters. Moreover, substantial differences are observed among the absorption spectra of different molecules in the energy region (0 - 8 eV). Comparing two different exchange-correlation potentials, local-density and generalized-gradient approximations, both calculated optical spectra present the same spectral feature.展开更多
The protonation effects on one- and two-photon absorption properties of an octupolar molecule TA with 1,3,5-triazine core and pyrrole electron-donating end-groups have been studied at hybrid density functional theory ...The protonation effects on one- and two-photon absorption properties of an octupolar molecule TA with 1,3,5-triazine core and pyrrole electron-donating end-groups have been studied at hybrid density functional theory level. A computational scheme is developed to simulate a proton attached to an atom. The numerical results show that large changes in both one- and two-photon absorption properties are observed when the compound is transformed from neutral to threefold protonated states. When the compound is protonated, more charge transfer states appear and the absorption band has a red-shift. Furthermore, the two-photon absorption cross-section is largely enhanced. The theoretical calculations demonstrate the protonation effect on promoting the intramolecular charge transfer strength. The results present qualitative agreement with the experimental observations. A two-photon absorption switch with the compound TA based on the protonation effect is proposed.展开更多
2,7′-(Ethylene)-bis-8-hydroxyquinoline was optimized with DFT/B3LYP and ab initio HF methods, so ion- ization potential and electron affinity could be determined. Absorption spectrum was calculated by ZINDO and TD-...2,7′-(Ethylene)-bis-8-hydroxyquinoline was optimized with DFT/B3LYP and ab initio HF methods, so ion- ization potential and electron affinity could be determined. Absorption spectrum was calculated by ZINDO and TD-DFT. CIS method was used to calculate the S1 excited states of the compound and afterwards the emission spectrum was computed. When the solvent effect was taken into account, the computed results show encouraging agreement with known experimental data. The results of analyzing the relationship between the energies and absorption spectra indicate that the ability to transporting electrons is strengthened compared with 8-hydroxyquinoline and that absorption and emission spectra are red-shifted. The intramoleeular reor- ganization energy of tris(2,7′-(ethylene)-bis-8-hydroxyquinoline)-aluminum implies its electron transporting property is worse than tris(8-hydroxyquinoline)-aluminum. The predicted maximum emission wavelength is red-shifted compared with tris(8-hydroxyquinoline)-aluminum.展开更多
Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is d...Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is driven by thedc and ac electric fields. The slow variation in the intraband polarization depends on the ac electric field frequency. Theintraband polarization increases when the ac electric field frequency is below the Bloch frequency. When the ac electricfield frequency is above the Bloch frequency, the intraband polarization downwards and its intensity decreases. Thesatellite structures in the optical absorption spectra are presented. Due to excitonic dynamic localization, the emissionlines of terahertz shift in different ac electric field and dc electric field.展开更多
Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4...Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.展开更多
In this study,density functional theory(DFT)and time-dependent density functional theory(TD-DFT)were used to investigate the effects of phosphorus atoms on intramolecular hydrogen bonds,charge distribution,frontier or...In this study,density functional theory(DFT)and time-dependent density functional theory(TD-DFT)were used to investigate the effects of phosphorus atoms on intramolecular hydrogen bonds,charge distribution,frontier orbitals,and electronic absorption spectrum peaks of phosphoheteroporphyrins(PP)and phosphoheterocorroles(PC).The data showed that the phosphorus site in the phosphorus porphyrin/corrole significantly lowered the highest occupied molecular orbital(HOMO)energy level and energy gap.The orbital energy levels of HOMO and HOMO-2 in PP21 and PC24 exhibited an elevation than that of the corresponding orbital energy levels of porphyrin/corrole,which facilitated the electron transition from the HOMO-2 to the lowest unoccupied molecular orbital and long-wavelength light absorption.In solvent conditions,the absorption wavelength of monophosphoporphyrins/monophosphocorroles exhibited significant redshift and were positively correlated with the decrease in solvent polarity.The results indicated that phosphoheteroporphyrin PP21 and phosphoheterocorrole PC24 had excellent electronic absorption spectra wavelengths in the visible light range,and might have a wide range of optoelectronic application potential.The above research data provided theoretical support for the screening and synthesis of heteroporphyrins and heterocorroles.展开更多
The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional ...The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The sub-stituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.展开更多
文摘The analytic response theory at density functional theory level is applied to investigate onephoton and two-photon absorption properties of a series of recently synthesized pyrene-core derivatives. The theoretical results show that there are a few charge-transfer states for each compound in the lower energy region. The one-photon absorption properties of the five investigated compounds are highly consistent with those given by experimental measurements. The two-photon absorption intensities of the compounds are greatly enhanced with the increments of the molecular sizes, in which the two-photon absorption cross section of the four-branched compound is about 5.6 times of that of the mono-branched molecule. Fhrthermore, it is shown that the two-photon absorption properties are sensitive to the geometrical arrangements.
文摘We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissipation theories, in either the chronological ordering prescription or the correlated driving-dissipation form. Analytical results can be derived for the linear absorption of two-state systems. Assessments on their applicability are then made by comparison to the exact results.
基金Project(50474051) supported by the National Natural Science Foundation of China
文摘The electronic structure and optical properties of novel Na-hP4 high pressure phase at different pressures(260,320,400 and 600 GPa)were investigated by the density functional theory(DFT)with the generalized gradient approximation(GGA)for the exchange and correlation energy.The band structure along the higher symmetry axes in the Brillouin zone,the density of states(DOS) and the partial density of states(PDOS)were presented.The band gap increases and the energy band expands to some extent with the pressure increasing.The dielectric function,reflectivity,energy-loss function,optical absorption coefficient,optical conductivity, refractive index and extinction coefficient were calculated for discussing the optical properties of Na-hP4 high pressure phase at different pressures.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFB0501502,2016YFC1400903,2016YFB0500304)the National Natural Science Foundation of China(Nos.91638201,41276184,41325004,41471308,41571361)+1 种基金the High Resolution Earth Observation Systems of National Science and Technology Major Projects(No.41-Y20A31-9003-15/17)the Director Foundation of Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(No.Y6SJ2100CX)
文摘The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared(NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths(412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scatteringcorrection methods.
基金National Natural Science Foundation of China under Grant No.10604045the Doctoral Scientific Research Startup Foundation of Ludong University under Grant No.202-23000301
文摘Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the closed-orbit theory and is of potential experimental interest.
基金supported by the National Natural Science Foundation of China and China Academy of Engineering Physics under Grant No. 10676025 (NSAF)
文摘The photoabsorption spectra have been calculated for Sis and SilO (n ≤ 5) clusters using time-dependent density-function theory. Our studies suggest that Sin-1 O clusters are relatively stable than those of corresponding Sis clusters. Moreover, substantial differences are observed among the absorption spectra of different molecules in the energy region (0 - 8 eV). Comparing two different exchange-correlation potentials, local-density and generalized-gradient approximations, both calculated optical spectra present the same spectral feature.
文摘The protonation effects on one- and two-photon absorption properties of an octupolar molecule TA with 1,3,5-triazine core and pyrrole electron-donating end-groups have been studied at hybrid density functional theory level. A computational scheme is developed to simulate a proton attached to an atom. The numerical results show that large changes in both one- and two-photon absorption properties are observed when the compound is transformed from neutral to threefold protonated states. When the compound is protonated, more charge transfer states appear and the absorption band has a red-shift. Furthermore, the two-photon absorption cross-section is largely enhanced. The theoretical calculations demonstrate the protonation effect on promoting the intramolecular charge transfer strength. The results present qualitative agreement with the experimental observations. A two-photon absorption switch with the compound TA based on the protonation effect is proposed.
文摘2,7′-(Ethylene)-bis-8-hydroxyquinoline was optimized with DFT/B3LYP and ab initio HF methods, so ion- ization potential and electron affinity could be determined. Absorption spectrum was calculated by ZINDO and TD-DFT. CIS method was used to calculate the S1 excited states of the compound and afterwards the emission spectrum was computed. When the solvent effect was taken into account, the computed results show encouraging agreement with known experimental data. The results of analyzing the relationship between the energies and absorption spectra indicate that the ability to transporting electrons is strengthened compared with 8-hydroxyquinoline and that absorption and emission spectra are red-shifted. The intramoleeular reor- ganization energy of tris(2,7′-(ethylene)-bis-8-hydroxyquinoline)-aluminum implies its electron transporting property is worse than tris(8-hydroxyquinoline)-aluminum. The predicted maximum emission wavelength is red-shifted compared with tris(8-hydroxyquinoline)-aluminum.
基金Supported by National Science Foundation of China under Grant No.10647132the Scientific Research Fund of Hunan Provincial Education Department under Grant No.05B014
文摘Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is driven by thedc and ac electric fields. The slow variation in the intraband polarization depends on the ac electric field frequency. Theintraband polarization increases when the ac electric field frequency is below the Bloch frequency. When the ac electricfield frequency is above the Bloch frequency, the intraband polarization downwards and its intensity decreases. Thesatellite structures in the optical absorption spectra are presented. Due to excitonic dynamic localization, the emissionlines of terahertz shift in different ac electric field and dc electric field.
文摘Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.
基金the financial support from the National Natural Science Foundation of China(21601025,21571025,21601024)Scientific Research Projects in Universities of Education Department of Liaoning Province(LJKQZ2021168)the Subject Construction Project-the Interdisciplinary Project of Dalian University(DLUXK-2023-YB-007)Scientific Research Platform Project of Dalian University(202101ZD01).
文摘In this study,density functional theory(DFT)and time-dependent density functional theory(TD-DFT)were used to investigate the effects of phosphorus atoms on intramolecular hydrogen bonds,charge distribution,frontier orbitals,and electronic absorption spectrum peaks of phosphoheteroporphyrins(PP)and phosphoheterocorroles(PC).The data showed that the phosphorus site in the phosphorus porphyrin/corrole significantly lowered the highest occupied molecular orbital(HOMO)energy level and energy gap.The orbital energy levels of HOMO and HOMO-2 in PP21 and PC24 exhibited an elevation than that of the corresponding orbital energy levels of porphyrin/corrole,which facilitated the electron transition from the HOMO-2 to the lowest unoccupied molecular orbital and long-wavelength light absorption.In solvent conditions,the absorption wavelength of monophosphoporphyrins/monophosphocorroles exhibited significant redshift and were positively correlated with the decrease in solvent polarity.The results indicated that phosphoheteroporphyrin PP21 and phosphoheterocorrole PC24 had excellent electronic absorption spectra wavelengths in the visible light range,and might have a wide range of optoelectronic application potential.The above research data provided theoretical support for the screening and synthesis of heteroporphyrins and heterocorroles.
基金supported by the National Natural Science Foundation of China (20803059)Chongqing Municipal Natural Science Foundation(2009BB6002)
文摘The excitedstate intramolecular charge transfer of four oxazolo[4,5-b]pyridine derivatives with different electron donating and electron withdrawing groups was investigated using the time-dependent density functional theory. The vertical excitation energies and the electronic structures were explored. Their distinct properties of absorption and fluorescence spectra in solvent phase were explained according to the electronic coupling matrix elements calculated by the Mulliken-Hush theory. The sub-stituent on the oxazolo[4,5-b]pyridines will remarkably change their spectra properties and increase the first excited-state dipole moments. The effect of protonation on the absorption and fluorescence spectra was also investigated systematically. Our study suggests that the present method is feasible to explain charge transfer excitation and predict the properties of absorption and emission spectra in the studied systems.