Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450℃to 800℃. Different spectroscopic techniques, such as Rama...Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450℃to 800℃. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate file diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 ℃. In the PLE and absorption spectra, differences were observed between the SWNTs grown oil Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.展开更多
Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal a...Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal algorithm based on labview is innovated and applied to detecting weak spectrum absorption signal instead of low pass filter. Two data processing methods are used to get the concentration of water vapor in ppm: one is a general formula method which has newly deduced a general formula to calculate the concentration of gas with temperature and beam intensity ratio when the pressure is equal to or greater than 1 atm; the other is engineering calibration method which is proved to have high resolution and accuracy with the fitted curve of beam intensity ratio and concentration in ppm when the temperature changes form 258K to 305K and the pressure ranges from 1 atm to 5 atm.展开更多
文摘Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450℃to 800℃. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate file diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 ℃. In the PLE and absorption spectra, differences were observed between the SWNTs grown oil Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.
基金This work was supported by Natural Science Foundation of China (60977058), Science Fund for Distinguished Young Scholars of Shandong Province of China (JQ200819), Research Award Fund for Outstanding Middle-aged' and Young Scientist of Shandong Province of China (2007BS08003), Independent Innovation Foundation of Shandong University (IIFSDU2010JC002).
文摘Scanning the absorption spectral line of water vapor through wavelength around 1368.597nm is successfully used to measure the value of micro-moisture content. The synchronous superposition average of original signal algorithm based on labview is innovated and applied to detecting weak spectrum absorption signal instead of low pass filter. Two data processing methods are used to get the concentration of water vapor in ppm: one is a general formula method which has newly deduced a general formula to calculate the concentration of gas with temperature and beam intensity ratio when the pressure is equal to or greater than 1 atm; the other is engineering calibration method which is proved to have high resolution and accuracy with the fitted curve of beam intensity ratio and concentration in ppm when the temperature changes form 258K to 305K and the pressure ranges from 1 atm to 5 atm.