Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of re...Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of reverse flotation of hematite are poor in presence of siderite using fatty acid as collector, starch as depressant of iron minerals and calcium ion as activator of quartz at strong alkaline pH. In this work, the effect of siderite on reverse anionic flotation of quartz from hematite was investigated. The effect mechanism of siderite on reverse flotation of hematite was studied by solution chemistry, ultraviolet spectrophotometry(UV) and Fourier transform infrared spectroscopy(FTIR). It was observed that siderite had strong depressive effect on quartz in flotation using sodium oleate as collector, corn starch as depressant of iron minerals and calcium chloride as activator of quartz at strong alkaline pH. The starch was adsorbed onto calcium carbonate by chemical reaction which was formed by CO^(2-)_3 from siderite dissolution and Ca^(2+) from calcium chloride as activator of quartz and precipitated on the surface of quartz, which resulted in improving the hydrophilic ability of quartz.展开更多
Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior...Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior. In this work, the effect of Mn2+ on quartz flotation was investigated through flotation tests. It was found that quartz can be depressed with Mn2+ and floated with dodecylamine in the pH region 7-8. In order to prove the validity of the findings, UV spectrophotometry, FTIR and SEM-EDS were carried out. UV spectrophotometry tests results show that Mn2+ can competitive adsorb with RNH3+ in the surface of quartz at acidic and neutral pH values. The FTIR measurements and SEM-EDS analysis indicate that Mn2+ forms precipitation and adsorbs on the negatively charged quartz surface, it induces quartz recovery dropping in alkaline pH. Furthermore, in the case of sodium hexametaphosphate(SH), sodium silicate or citric acid, the effects of Mn2+ were also studied. This depression in the given Mn2+ did not disappear. Citric acid is an appropriate modifier to separate quartz depressed by Mn2+ from other ores at pH 7.展开更多
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
The adsorption capacity of activated carbon modified with KMnO4 (potassium permanganate) for Cr(VI) from aqueous solution was investigated. The modified activated carbon was characterized by SEM (scanning electro...The adsorption capacity of activated carbon modified with KMnO4 (potassium permanganate) for Cr(VI) from aqueous solution was investigated. The modified activated carbon was characterized by SEM (scanning electron microscopy), FT-IR (Fourier transform infrared spectrometer), and N2 adsorption/desorption tests. Adsorption of Cr(VI) from aqueous solution onto the activated carbon was investigated in a batch system. In the present study, the effect of various parameters such as pH, contact time and initial concentration on the adsorption capacity were determined by ICP-AES (inductively coupled plasma atomic emission spectrometry). The Cr(VI) adsorption on the activated carbon conforms to the Langmuir and Freundlich isothermal adsorption equation. The rates of adsorption were found to conform to pseudo-second order kinetic. The modified activated carbon can be an effective adsorbent for Cr(VI) from the aqueous solution.展开更多
A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term...A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term exploitation of oil and gas processing catalysts leads to formation of carbon- and sulfur-containing structures of coke and dense products on the catalyst surface. They block reactive catalyst sites and reduce the catalytic activity. The main advantage of radiation processing by EB (electron beam) and gamma rays is chain cracking reaction in crude oil. Otherwise, under exposure to ionize radiation, considerable structure modification of equilibrium silica-alumina catalyst from FCC process may occur, in addition to the removal of impurities. The conditions applied in the irradiation range (20-150 kGy) of gamma rays and EB were not sufficient to alter the structure of the catalyst, whether for removal of the contaminant nickel, a major contaminant of the FCC catalyst, either to rupture of the crystalline structure either for the future reutilization of chemical elements. ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and EDXRFS (Energy Dispersive X-Ray Fluorescence Spectrometry) analysis were used to characterize and evaluate effects of radiation processing on equilibrium catalysts purification. To evaluate and comprehend the reactive catalyst sites, SEM (Scanning Electron Microscopy) and particle size distribution analyses were carried out.展开更多
It is of considerable importance to investigate the influence of weathering on the degradation processes of heat-treated wood. Kiln-dried (untreated)jack pine (Pinus banksiana) and jack pine heat-treated at three ...It is of considerable importance to investigate the influence of weathering on the degradation processes of heat-treated wood. Kiln-dried (untreated)jack pine (Pinus banksiana) and jack pine heat-treated at three different temperatures (190 ℃, 200 ℃, and 210 ℃) were exposed to artificial weathering for different periods in order to understand the degradation processes due to weathering. Before and after exposure, their color and wettability by water were determined. Structural changes and chemical modifications at exposed surfaces were also investigated using SEM (scanning electron spectroscopy), FTIR (Fourier transforms infrared spectroscopy), and XPS (X-ray photoelectron spectroscopy). The results revealed that the photo-degradation of lignin and the presence of extractives play important roles in color change and wetting behavior of heat-treated wood surfaces during weathering. The structural changes also influence the wettability. The effects of weathering for woods heat-treated under different conditions were similar, but different from those for untreated wood.展开更多
Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil sampl...Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil samples were collected from 11 typical sites of apple orchards,and the croplands surrounding them.Near-infrared(NIR) and mid-infrared(MIR) spectra,combined with partial least square regression,were used to predict the soil parameters,including organic matter(OM) content,pH,and the contents of As,Cu,Zn,Pb,and Cr.Organic matter and pH were closely correlated with As and the heavy metals.The NIR model showed a high prediction accuracy for the determination of OM,pH,and As,with correlation coefficients(r) of 0.89,0.89,and 0.90,respectively.The predictions of these three parameters by MIR showed reduced accuracy,with r values of 0.77,0.84,and 0.92,respectively.The heavy metals could also be measured by spectroscopy due to their correlation with organic matter.Both NIR and MIR had high correlation coefficients for the determination of Cu,Zn,and Cr,with standard errors of prediction of 2.95,10.48,and 9.49 mg kg-1 for NIR and 3.69,5.84,and 6.94 mg kg-1 for MIR,respectively.Pb content behaved differently from the other parameters.Both NIR and MIR underestimated Pb content,with r values of 0.67 and 0.56 and standard errors of prediction of 3.46 and 2.99,respectively.Cu and Zn had a higher correlation with OM and pH and were better predicted than Pb and Cr.Thus,NIR spectra could accurately predict several soil parameters,metallic and nonmetallic,simultaneously,and were more feasible than MIR in analyzing soil parameters in the study area.展开更多
基金Project(51374079) supported by the National Natural Science Foundation of China
文摘Reverse flotation technology is one of the most efficient ways to improve the quality and reduce impurity of iron concentrate. Mineral processors dealing with hematite face a challenge that the flotation results of reverse flotation of hematite are poor in presence of siderite using fatty acid as collector, starch as depressant of iron minerals and calcium ion as activator of quartz at strong alkaline pH. In this work, the effect of siderite on reverse anionic flotation of quartz from hematite was investigated. The effect mechanism of siderite on reverse flotation of hematite was studied by solution chemistry, ultraviolet spectrophotometry(UV) and Fourier transform infrared spectroscopy(FTIR). It was observed that siderite had strong depressive effect on quartz in flotation using sodium oleate as collector, corn starch as depressant of iron minerals and calcium chloride as activator of quartz at strong alkaline pH. The starch was adsorbed onto calcium carbonate by chemical reaction which was formed by CO^(2-)_3 from siderite dissolution and Ca^(2+) from calcium chloride as activator of quartz and precipitated on the surface of quartz, which resulted in improving the hydrophilic ability of quartz.
基金Projects(21176026,21176242)supported by the National Natural Science Foundation of China
文摘Quartz is, in most cases, the major gangue mineral found in the manganese ore. Mn iron, dissolved from the surface of ore, will determine the interfacial properties of the particles and, thus, their flotation behavior. In this work, the effect of Mn2+ on quartz flotation was investigated through flotation tests. It was found that quartz can be depressed with Mn2+ and floated with dodecylamine in the pH region 7-8. In order to prove the validity of the findings, UV spectrophotometry, FTIR and SEM-EDS were carried out. UV spectrophotometry tests results show that Mn2+ can competitive adsorb with RNH3+ in the surface of quartz at acidic and neutral pH values. The FTIR measurements and SEM-EDS analysis indicate that Mn2+ forms precipitation and adsorbs on the negatively charged quartz surface, it induces quartz recovery dropping in alkaline pH. Furthermore, in the case of sodium hexametaphosphate(SH), sodium silicate or citric acid, the effects of Mn2+ were also studied. This depression in the given Mn2+ did not disappear. Citric acid is an appropriate modifier to separate quartz depressed by Mn2+ from other ores at pH 7.
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
文摘The adsorption capacity of activated carbon modified with KMnO4 (potassium permanganate) for Cr(VI) from aqueous solution was investigated. The modified activated carbon was characterized by SEM (scanning electron microscopy), FT-IR (Fourier transform infrared spectrometer), and N2 adsorption/desorption tests. Adsorption of Cr(VI) from aqueous solution onto the activated carbon was investigated in a batch system. In the present study, the effect of various parameters such as pH, contact time and initial concentration on the adsorption capacity were determined by ICP-AES (inductively coupled plasma atomic emission spectrometry). The Cr(VI) adsorption on the activated carbon conforms to the Langmuir and Freundlich isothermal adsorption equation. The rates of adsorption were found to conform to pseudo-second order kinetic. The modified activated carbon can be an effective adsorbent for Cr(VI) from the aqueous solution.
文摘A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term exploitation of oil and gas processing catalysts leads to formation of carbon- and sulfur-containing structures of coke and dense products on the catalyst surface. They block reactive catalyst sites and reduce the catalytic activity. The main advantage of radiation processing by EB (electron beam) and gamma rays is chain cracking reaction in crude oil. Otherwise, under exposure to ionize radiation, considerable structure modification of equilibrium silica-alumina catalyst from FCC process may occur, in addition to the removal of impurities. The conditions applied in the irradiation range (20-150 kGy) of gamma rays and EB were not sufficient to alter the structure of the catalyst, whether for removal of the contaminant nickel, a major contaminant of the FCC catalyst, either to rupture of the crystalline structure either for the future reutilization of chemical elements. ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and EDXRFS (Energy Dispersive X-Ray Fluorescence Spectrometry) analysis were used to characterize and evaluate effects of radiation processing on equilibrium catalysts purification. To evaluate and comprehend the reactive catalyst sites, SEM (Scanning Electron Microscopy) and particle size distribution analyses were carried out.
文摘It is of considerable importance to investigate the influence of weathering on the degradation processes of heat-treated wood. Kiln-dried (untreated)jack pine (Pinus banksiana) and jack pine heat-treated at three different temperatures (190 ℃, 200 ℃, and 210 ℃) were exposed to artificial weathering for different periods in order to understand the degradation processes due to weathering. Before and after exposure, their color and wettability by water were determined. Structural changes and chemical modifications at exposed surfaces were also investigated using SEM (scanning electron spectroscopy), FTIR (Fourier transforms infrared spectroscopy), and XPS (X-ray photoelectron spectroscopy). The results revealed that the photo-degradation of lignin and the presence of extractives play important roles in color change and wetting behavior of heat-treated wood surfaces during weathering. The structural changes also influence the wettability. The effects of weathering for woods heat-treated under different conditions were similar, but different from those for untreated wood.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China(No.2008ZX07425-001)
文摘Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil samples were collected from 11 typical sites of apple orchards,and the croplands surrounding them.Near-infrared(NIR) and mid-infrared(MIR) spectra,combined with partial least square regression,were used to predict the soil parameters,including organic matter(OM) content,pH,and the contents of As,Cu,Zn,Pb,and Cr.Organic matter and pH were closely correlated with As and the heavy metals.The NIR model showed a high prediction accuracy for the determination of OM,pH,and As,with correlation coefficients(r) of 0.89,0.89,and 0.90,respectively.The predictions of these three parameters by MIR showed reduced accuracy,with r values of 0.77,0.84,and 0.92,respectively.The heavy metals could also be measured by spectroscopy due to their correlation with organic matter.Both NIR and MIR had high correlation coefficients for the determination of Cu,Zn,and Cr,with standard errors of prediction of 2.95,10.48,and 9.49 mg kg-1 for NIR and 3.69,5.84,and 6.94 mg kg-1 for MIR,respectively.Pb content behaved differently from the other parameters.Both NIR and MIR underestimated Pb content,with r values of 0.67 and 0.56 and standard errors of prediction of 3.46 and 2.99,respectively.Cu and Zn had a higher correlation with OM and pH and were better predicted than Pb and Cr.Thus,NIR spectra could accurately predict several soil parameters,metallic and nonmetallic,simultaneously,and were more feasible than MIR in analyzing soil parameters in the study area.