The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss ...The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss of the fundamental mode are simulated by full vector Galerkin finite element method(FEM) with a perfectly matched layer(PML). The results show that this PCF can keep low confinement loss when the rings of air holes are few. When the wavelength is 1.55 μm , the birefringence, the confinement loss of quick-axis and slow-axis are 1.365×10-3, 0.017 dB/m and 0.051 dB/m, respectively. A new way is proposed to fabricate polarization-mainting fibers with high performance.展开更多
We propose a novel optical polarizer based on an asymmetric dual-core photonic crystal fiber(PCF) with triangular lattice air-holes.The fiber is designed as that the effective indices of modes in the two cores are mat...We propose a novel optical polarizer based on an asymmetric dual-core photonic crystal fiber(PCF) with triangular lattice air-holes.The fiber is designed as that the effective indices of modes in the two cores are matched at one polarized state but mismatched at another polarized state.As a result,one of the polarization states is coupled to the other core and transferred into a high-order mode.The transmission properties of the polarizer are investigated by the semi-vectorial beam propagation method(SV-BPM).Numerical results demonstrate that a device length of 11.3 mm shows extinction ratio as low as-20 dB with bandwidth as great as 80 nm ranging from 1.51 mm to 1.59 mm.展开更多
We demonstrate a novel SOI-based photonic crystal(PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths,and simulate the luminescence enha...We demonstrate a novel SOI-based photonic crystal(PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths,and simulate the luminescence enhancement of sol-gel Er-doped SiO2 filled in the microcavity by finite-difference time-domain(FDTD) method.The calculated results indicate that a unique sharp resonant peak dominates in the spectrum at the expected telecommunication wavelength of 1.5509 mm,with very high normalized peak intensity of ~108.The electromagnetic field of the resonant mode exhibits the strongest in the microcavity,and decays rapidly to zero along both sides,which means that the resonant mode field is well confined in the microcavity.The simulation results fully verify the enhancement of luminescence by PC double-heterostructure slot waveguide microcavity theoretically,which is a promising way to realize the high-efficiency luminescence of Si-based materials.展开更多
A polarization-dependent supercontinuum spectrum source of light from the UV to infrared region has been generated in our photonic crystal fiber with birefringence B=2.23×10 3.By tuning the polarization direction...A polarization-dependent supercontinuum spectrum source of light from the UV to infrared region has been generated in our photonic crystal fiber with birefringence B=2.23×10 3.By tuning the polarization direction of the input pulse,it is found that the width of the supercontinuum spectrum changes dramatically with the input polarization directions.At the same time,we qualitatively explain the blue-shift peak and the red-shift peak in the experimental spectrum using phase matching conditions on dispersive waves,stoke waves and the pump wave.In addition,we also found that supercontinuum spectrum generation,to some extent,is dependent on the pump wavelength and average power of the pump.The spectrum is broadened with the increase of average power,but unchanged after average power reaches a certain value;when the pump wavelength is located in the anomalous dispersion and further away from the zero-dispersion wavelength,the spectrum of the supercontinuum is wider.展开更多
Three bis-vinylpyridine compounds (4,4′-bis(2-vinylpyridine)biphenyl L1,4,4′-bis(3-vinylpyridine) biphenyl L2,and 4,4′-bis (4-vinylpyridine)biphenyl L3) were synthesized by one-step solid-state reactions at room te...Three bis-vinylpyridine compounds (4,4′-bis(2-vinylpyridine)biphenyl L1,4,4′-bis(3-vinylpyridine) biphenyl L2,and 4,4′-bis (4-vinylpyridine)biphenyl L3) were synthesized by one-step solid-state reactions at room temperature,giving nearly quantitative yields. The compounds obtained were fully characterized by IR,MS and NMR spectroscopies. The structures of L2 and L3 were determined by single crystal X-ray diffraction analysis. No noticeable solvatochromism was observed in either one-photon absorption or one-photon excited fluorescence spectra. All of the compounds have high fluorescence quantum yields and long fluorescence lifetime. The linear and nonlinear optical properties of the compounds were investigated both experimentally and theoretically. Interestingly,the position of the nitrogen atom from pyridine influences their two-photon absorption across-sections.展开更多
Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic c...Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically.It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle.Owing to the birefringence effect,the incident pulse can be regarded as two orthogonal polarized pulses.The phenomenon of pulse trapping occurs because of the cross phase modulation(XPM) between the two components.As a result,the bandwidth of the supercontinuum(SC) decreases compared with the case that the incident pulse is input along the principal axis.When the polarization direction of the incident pulse is parallel to the fast axis,the bandwidth of the supercontinuum is maximal.展开更多
A novel equal diameter circular-hole photonic crystal fiber(PCF) with high birefringence is proposed and numerically analyzed by employing the finite-element method. The proposed PCF's birefringence is 10^(-3), wh...A novel equal diameter circular-hole photonic crystal fiber(PCF) with high birefringence is proposed and numerically analyzed by employing the finite-element method. The proposed PCF's birefringence is 10^(-3), which can reach 2 orders higher than that of traditional high birefringence fiber, and this equal diameter circular-hole structure reduces the difficulty of the actual drawing process. The effect of different parameters on the birefringence of this PCF is investigated, and the application of the Sagnac interferometer based on fiber filling technology in temperature sensing is studied. The result shows that the high birefringence PCF can be used in both optical communication and optical sensing fields.展开更多
基金The National Natural Science Foundation of China(Nos.61367007,61167005)the Natural Science Fund of Gansu Province of China(Nos.1112RJZA017,1112RJZA018)the Research Fund for the Doctoral Program of Lanzhou University of Technology
基金National Natural Science Foundation of China(No.60577034)
文摘The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss of the fundamental mode are simulated by full vector Galerkin finite element method(FEM) with a perfectly matched layer(PML). The results show that this PCF can keep low confinement loss when the rings of air holes are few. When the wavelength is 1.55 μm , the birefringence, the confinement loss of quick-axis and slow-axis are 1.365×10-3, 0.017 dB/m and 0.051 dB/m, respectively. A new way is proposed to fabricate polarization-mainting fibers with high performance.
基金supported by the National Natural Science Foundation of China (No.10904051)the China Postdoctoral Science Foundation (Nos.20080441070 and 200902505) the Jiangsu Planned Projects for Postdoctoral Research Funds (No.0802018B)
文摘We propose a novel optical polarizer based on an asymmetric dual-core photonic crystal fiber(PCF) with triangular lattice air-holes.The fiber is designed as that the effective indices of modes in the two cores are matched at one polarized state but mismatched at another polarized state.As a result,one of the polarization states is coupled to the other core and transferred into a high-order mode.The transmission properties of the polarizer are investigated by the semi-vectorial beam propagation method(SV-BPM).Numerical results demonstrate that a device length of 11.3 mm shows extinction ratio as low as-20 dB with bandwidth as great as 80 nm ranging from 1.51 mm to 1.59 mm.
基金supported by the National Key Basic Research Special Fund of China (No.2007CB613404)the National High Technology,Research and Development Program of China (No.2011AA010303)the National Natural Science Foundation of China (Nos.61090390,60837001,60977045,60877014 and 60776057)
文摘We demonstrate a novel SOI-based photonic crystal(PC) double-heterostructure slot waveguide microcavity constructed by cascading three PC slot waveguides with different slot widths,and simulate the luminescence enhancement of sol-gel Er-doped SiO2 filled in the microcavity by finite-difference time-domain(FDTD) method.The calculated results indicate that a unique sharp resonant peak dominates in the spectrum at the expected telecommunication wavelength of 1.5509 mm,with very high normalized peak intensity of ~108.The electromagnetic field of the resonant mode exhibits the strongest in the microcavity,and decays rapidly to zero along both sides,which means that the resonant mode field is well confined in the microcavity.The simulation results fully verify the enhancement of luminescence by PC double-heterostructure slot waveguide microcavity theoretically,which is a promising way to realize the high-efficiency luminescence of Si-based materials.
基金supported by the National Natural Science Foundation of China (Grant No.10874145)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20091333110010)+1 种基金the Natural Science Foundation of Hebei Province (Grant No.F2009000481)the China Postdoctoral Science Foundation (Grant Nos.20080440014 and 200902046)
文摘A polarization-dependent supercontinuum spectrum source of light from the UV to infrared region has been generated in our photonic crystal fiber with birefringence B=2.23×10 3.By tuning the polarization direction of the input pulse,it is found that the width of the supercontinuum spectrum changes dramatically with the input polarization directions.At the same time,we qualitatively explain the blue-shift peak and the red-shift peak in the experimental spectrum using phase matching conditions on dispersive waves,stoke waves and the pump wave.In addition,we also found that supercontinuum spectrum generation,to some extent,is dependent on the pump wavelength and average power of the pump.The spectrum is broadened with the increase of average power,but unchanged after average power reaches a certain value;when the pump wavelength is located in the anomalous dispersion and further away from the zero-dispersion wavelength,the spectrum of the supercontinuum is wider.
基金supported by a grant for the National Natural Science Foundation of China (20771001, 50703001, 50873001)Department of Education of Anhui Province (KJ2010A030)+1 种基金Team for Scientific Innovation Foundation of Anhui Province (2006KJ007TD)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation (Anhui University)
文摘Three bis-vinylpyridine compounds (4,4′-bis(2-vinylpyridine)biphenyl L1,4,4′-bis(3-vinylpyridine) biphenyl L2,and 4,4′-bis (4-vinylpyridine)biphenyl L3) were synthesized by one-step solid-state reactions at room temperature,giving nearly quantitative yields. The compounds obtained were fully characterized by IR,MS and NMR spectroscopies. The structures of L2 and L3 were determined by single crystal X-ray diffraction analysis. No noticeable solvatochromism was observed in either one-photon absorption or one-photon excited fluorescence spectra. All of the compounds have high fluorescence quantum yields and long fluorescence lifetime. The linear and nonlinear optical properties of the compounds were investigated both experimentally and theoretically. Interestingly,the position of the nitrogen atom from pyridine influences their two-photon absorption across-sections.
基金supported by the National Natural Science Foundation of China (No.10874145)the Natural Science Foundation of Hebei Province of China (No.F2009000481)the China Postdoctoral Science Foundation (No.20080440014)
文摘Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically.It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle.Owing to the birefringence effect,the incident pulse can be regarded as two orthogonal polarized pulses.The phenomenon of pulse trapping occurs because of the cross phase modulation(XPM) between the two components.As a result,the bandwidth of the supercontinuum(SC) decreases compared with the case that the incident pulse is input along the principal axis.When the polarization direction of the incident pulse is parallel to the fast axis,the bandwidth of the supercontinuum is maximal.
基金supported by the National Natural Science Foundation of China(Nos.61301124,61471075 and 61671091)the Basic Research Project of Chongqing Science and Technology Commission(Nos.cstc2014gjhz40001,cstc2015jcyj BX0068,cstc2014jcyj A1350,cstc2015jcyj B0360 and KJZH17115)+3 种基金the University Innovation Team Construction Plan of Smart Medical System and Core Technologythe Enhancement Plan of Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technologythe Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1704091)the Funds of Chongqing University of Posts and Telecommunications(No.A2016-72)
文摘A novel equal diameter circular-hole photonic crystal fiber(PCF) with high birefringence is proposed and numerically analyzed by employing the finite-element method. The proposed PCF's birefringence is 10^(-3), which can reach 2 orders higher than that of traditional high birefringence fiber, and this equal diameter circular-hole structure reduces the difficulty of the actual drawing process. The effect of different parameters on the birefringence of this PCF is investigated, and the application of the Sagnac interferometer based on fiber filling technology in temperature sensing is studied. The result shows that the high birefringence PCF can be used in both optical communication and optical sensing fields.