In this work, we study an entanglement concentration scheme in a 3-mode optomechanical system. The scheme is based on phonon counting measurements, which can be performed through photon counting of an auxiliary cavity...In this work, we study an entanglement concentration scheme in a 3-mode optomechanical system. The scheme is based on phonon counting measurements, which can be performed through photon counting of an auxiliary cavity connected to the mechanical resonator. The amount of entanglement between the two cavity output modes is found to increase logarithmically with the number of detected phonons(photons). Such an entanglement concentration scheme is deterministic since, independently of the number of detected phonons(photons), the measurement always leads to an increase in output entanglement. Besides numerical simulations,we provide analytical results and physical insight for the improved entanglement and the concentration efficiency.展开更多
Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on...Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes:(1) equilibrium and kinetic rate constants of chemical reactions;(2) empirical polar parameters of ionic liquids;(3) spectral properties of probe molecules;(4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.展开更多
Mixed halide perovskites with the ability to tune bandgaps exhibit attractive applications in tandem solar cells,building integrated photovoltaic and wavelength-tunable light-emitting devices.However,halide demixing u...Mixed halide perovskites with the ability to tune bandgaps exhibit attractive applications in tandem solar cells,building integrated photovoltaic and wavelength-tunable light-emitting devices.However,halide demixing under illumination or in the dark with a charge-carrier injection in both hybrid and inorganic perovskites results in bandgap instability and current-density-voltage(J-V)hysteresis,which can significantly hamper their application.Here,we demonstrate that halide segregation and J-V hysteresis in mixed halide inorganic CsPbIBr_(2)solar cells can be effectively mitigated by introducing an intermediate phase-enhanced Ostwald ripening through the control of the chemical composition in the CsPbIBr_(2)precursor solution.Excess amounts of either PbBr_(2)or CsI are incorporated into originally even molar amounts of PbBr_(2)and CsI precursor solutions.With the PbBr_(2)-excess,we observed an enlarged perovskite grain size,no detectable halide phase segregation at the grain boundaries nor the perovskite/TiO2 interface,an increased minority carrier lifetime,a reduced J-V hysteresis,and an improved solar-cell performance.However,different CsI:PbBr_(2)stoichiometric ratios were found to have different effects on the performance of the perovskite solar cell.The excessive lead phase is reactive with the dimethyl sulfoxide(DMSO)in the precursor solution to form the Pb(I,Br)2·DMSO complex and the quasi-twodimensional(2D)CsPb_(2)(I,Br)5,which are conducive to Ostwald maturation and defect extinction.Finally,the CsPbIBr_(2)solar cell with a PbBr_(2)-excess precursor composition reaches a power conversion efficiency(PCE)of 9.37%(stabilized PCE of 8.48%)and a maximum external quantum efficiency of over 90%.展开更多
基金supported by the Chinese Youth 1000 Talents Program and the National Natural Science Foundation of China(Grant No.11434011)
文摘In this work, we study an entanglement concentration scheme in a 3-mode optomechanical system. The scheme is based on phonon counting measurements, which can be performed through photon counting of an auxiliary cavity connected to the mechanical resonator. The amount of entanglement between the two cavity output modes is found to increase logarithmically with the number of detected phonons(photons). Such an entanglement concentration scheme is deterministic since, independently of the number of detected phonons(photons), the measurement always leads to an increase in output entanglement. Besides numerical simulations,we provide analytical results and physical insight for the improved entanglement and the concentration efficiency.
基金supported by the National Natural Science Foundation of China (21573196)the Program for Zhejiang Leading Team of S&T Innovation (2011R50007)the Fundamental Research Funds of the Central Universities
文摘Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes:(1) equilibrium and kinetic rate constants of chemical reactions;(2) empirical polar parameters of ionic liquids;(3) spectral properties of probe molecules;(4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.
基金the National Natural Science Foundation of China(51802241 and 91963209)the Fundamental Research Funds for the Central Universities(WUT:2019IVB055 and 2019IVA066)+1 种基金ARC Discovery Grant DP150104483,ARC Centre of Excellence in Exciton Science(CE170100026)the Australian Government through the Australian Renewable Energy Agency(ARENA).
文摘Mixed halide perovskites with the ability to tune bandgaps exhibit attractive applications in tandem solar cells,building integrated photovoltaic and wavelength-tunable light-emitting devices.However,halide demixing under illumination or in the dark with a charge-carrier injection in both hybrid and inorganic perovskites results in bandgap instability and current-density-voltage(J-V)hysteresis,which can significantly hamper their application.Here,we demonstrate that halide segregation and J-V hysteresis in mixed halide inorganic CsPbIBr_(2)solar cells can be effectively mitigated by introducing an intermediate phase-enhanced Ostwald ripening through the control of the chemical composition in the CsPbIBr_(2)precursor solution.Excess amounts of either PbBr_(2)or CsI are incorporated into originally even molar amounts of PbBr_(2)and CsI precursor solutions.With the PbBr_(2)-excess,we observed an enlarged perovskite grain size,no detectable halide phase segregation at the grain boundaries nor the perovskite/TiO2 interface,an increased minority carrier lifetime,a reduced J-V hysteresis,and an improved solar-cell performance.However,different CsI:PbBr_(2)stoichiometric ratios were found to have different effects on the performance of the perovskite solar cell.The excessive lead phase is reactive with the dimethyl sulfoxide(DMSO)in the precursor solution to form the Pb(I,Br)2·DMSO complex and the quasi-twodimensional(2D)CsPb_(2)(I,Br)5,which are conducive to Ostwald maturation and defect extinction.Finally,the CsPbIBr_(2)solar cell with a PbBr_(2)-excess precursor composition reaches a power conversion efficiency(PCE)of 9.37%(stabilized PCE of 8.48%)and a maximum external quantum efficiency of over 90%.