提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器...提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器具有不同的自由频谱范围(FSR),实现了滤波器的连续可调谐.当温度的变化范围为20-80℃时,仿真测得,FSR的变化范围为12.145-23.277 GHz.在有限脉冲响应(FIR)滤波器中引入电反馈,构成IIR滤波器,使得MPF的3 d B带宽减小,主旁瓣抑制比(MSSR)增加,其通带特性得到了改善.通过调节射频信号放大器的增益,可以改变滤波器的频率响应形状,实现滤波器的可重构特性.展开更多
提出并通过仿真验证了1种基于高双折射光子晶体光纤(HB-PCF)与光栅对的微波光子滤波器.以多波长光纤激光器作光源,通过改变填充温敏液体的HB-PCF周围温度,使HB-PCF具有不同的双折射.随着HB-PCF双折射率的连续变化,激光器输出了不同波长...提出并通过仿真验证了1种基于高双折射光子晶体光纤(HB-PCF)与光栅对的微波光子滤波器.以多波长光纤激光器作光源,通过改变填充温敏液体的HB-PCF周围温度,使HB-PCF具有不同的双折射.随着HB-PCF双折射率的连续变化,激光器输出了不同波长间隔的激光,使微波光子滤波器具有不同的自由频谱范围,当温度的变化范围为20-80℃时,FSR的变化范围为18.62-25.98 GHz,从而实现了连续可调谐.通过引入单模光纤与光栅对级联,改变光栅对的反射系数和掺铒光纤的增益,使滤波器的主旁瓣抑制比提高到33 d B,Q值可达到1 553,有效地提高了滤波器的频率选择性.展开更多
A birefringence photonic crystal fiber is used for PMD compensation in a single-channel 40Gbit/s-speed optical communi- cation system with CSRZ format. The experimental results of transmission show that the PMD compen...A birefringence photonic crystal fiber is used for PMD compensation in a single-channel 40Gbit/s-speed optical communi- cation system with CSRZ format. The experimental results of transmission show that the PMD compensation system works effectively.展开更多
The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss ...The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss of the fundamental mode are simulated by full vector Galerkin finite element method(FEM) with a perfectly matched layer(PML). The results show that this PCF can keep low confinement loss when the rings of air holes are few. When the wavelength is 1.55 μm , the birefringence, the confinement loss of quick-axis and slow-axis are 1.365×10-3, 0.017 dB/m and 0.051 dB/m, respectively. A new way is proposed to fabricate polarization-mainting fibers with high performance.展开更多
A novel equal diameter circular-hole photonic crystal fiber(PCF) with high birefringence is proposed and numerically analyzed by employing the finite-element method. The proposed PCF's birefringence is 10^(-3), wh...A novel equal diameter circular-hole photonic crystal fiber(PCF) with high birefringence is proposed and numerically analyzed by employing the finite-element method. The proposed PCF's birefringence is 10^(-3), which can reach 2 orders higher than that of traditional high birefringence fiber, and this equal diameter circular-hole structure reduces the difficulty of the actual drawing process. The effect of different parameters on the birefringence of this PCF is investigated, and the application of the Sagnac interferometer based on fiber filling technology in temperature sensing is studied. The result shows that the high birefringence PCF can be used in both optical communication and optical sensing fields.展开更多
Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic c...Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically.It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle.Owing to the birefringence effect,the incident pulse can be regarded as two orthogonal polarized pulses.The phenomenon of pulse trapping occurs because of the cross phase modulation(XPM) between the two components.As a result,the bandwidth of the supercontinuum(SC) decreases compared with the case that the incident pulse is input along the principal axis.When the polarization direction of the incident pulse is parallel to the fast axis,the bandwidth of the supercontinuum is maximal.展开更多
文摘提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器具有不同的自由频谱范围(FSR),实现了滤波器的连续可调谐.当温度的变化范围为20-80℃时,仿真测得,FSR的变化范围为12.145-23.277 GHz.在有限脉冲响应(FIR)滤波器中引入电反馈,构成IIR滤波器,使得MPF的3 d B带宽减小,主旁瓣抑制比(MSSR)增加,其通带特性得到了改善.通过调节射频信号放大器的增益,可以改变滤波器的频率响应形状,实现滤波器的可重构特性.
文摘提出并通过仿真验证了1种基于高双折射光子晶体光纤(HB-PCF)与光栅对的微波光子滤波器.以多波长光纤激光器作光源,通过改变填充温敏液体的HB-PCF周围温度,使HB-PCF具有不同的双折射.随着HB-PCF双折射率的连续变化,激光器输出了不同波长间隔的激光,使微波光子滤波器具有不同的自由频谱范围,当温度的变化范围为20-80℃时,FSR的变化范围为18.62-25.98 GHz,从而实现了连续可调谐.通过引入单模光纤与光栅对级联,改变光栅对的反射系数和掺铒光纤的增益,使滤波器的主旁瓣抑制比提高到33 d B,Q值可达到1 553,有效地提高了滤波器的频率选择性.
基金This work has been supported by the National Basic ResearchProgram of China (973 Program) (2003CB314907)the NationalNatural Science Foundation of China (90604026 and 60310174)the China Postdoctoral Science Foundation ( 20060400059).
文摘A birefringence photonic crystal fiber is used for PMD compensation in a single-channel 40Gbit/s-speed optical communi- cation system with CSRZ format. The experimental results of transmission show that the PMD compensation system works effectively.
基金National Natural Science Foundation of China(No.60577034)
文摘The triangular-lattice highly birefringent photonic crystal fibers(PCFs) with gradually increasing diameter of the air holes along radial axis are put forward. The modal birefringence, dispersion and confinement loss of the fundamental mode are simulated by full vector Galerkin finite element method(FEM) with a perfectly matched layer(PML). The results show that this PCF can keep low confinement loss when the rings of air holes are few. When the wavelength is 1.55 μm , the birefringence, the confinement loss of quick-axis and slow-axis are 1.365×10-3, 0.017 dB/m and 0.051 dB/m, respectively. A new way is proposed to fabricate polarization-mainting fibers with high performance.
基金supported by the National Natural Science Foundation of China(Nos.61301124,61471075 and 61671091)the Basic Research Project of Chongqing Science and Technology Commission(Nos.cstc2014gjhz40001,cstc2015jcyj BX0068,cstc2014jcyj A1350,cstc2015jcyj B0360 and KJZH17115)+3 种基金the University Innovation Team Construction Plan of Smart Medical System and Core Technologythe Enhancement Plan of Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technologythe Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1704091)the Funds of Chongqing University of Posts and Telecommunications(No.A2016-72)
文摘A novel equal diameter circular-hole photonic crystal fiber(PCF) with high birefringence is proposed and numerically analyzed by employing the finite-element method. The proposed PCF's birefringence is 10^(-3), which can reach 2 orders higher than that of traditional high birefringence fiber, and this equal diameter circular-hole structure reduces the difficulty of the actual drawing process. The effect of different parameters on the birefringence of this PCF is investigated, and the application of the Sagnac interferometer based on fiber filling technology in temperature sensing is studied. The result shows that the high birefringence PCF can be used in both optical communication and optical sensing fields.
基金supported by the National Natural Science Foundation of China (No.10874145)the Natural Science Foundation of Hebei Province of China (No.F2009000481)the China Postdoctoral Science Foundation (No.20080440014)
文摘Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically.It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle.Owing to the birefringence effect,the incident pulse can be regarded as two orthogonal polarized pulses.The phenomenon of pulse trapping occurs because of the cross phase modulation(XPM) between the two components.As a result,the bandwidth of the supercontinuum(SC) decreases compared with the case that the incident pulse is input along the principal axis.When the polarization direction of the incident pulse is parallel to the fast axis,the bandwidth of the supercontinuum is maximal.