Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by ...Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.展开更多
The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineerin...The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to elucidate the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-ε turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Cd=kd (W/H)-b (kd, b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%–22% as the windbreak width increased.展开更多
Air-core photonic bandgap fiber(PBF)is the perfect choice of the next-generation fiber optical gyroscope(FOG),with excellent temperature,electromagnetism and radiation adaptability.Numerical aperture is an important o...Air-core photonic bandgap fiber(PBF)is the perfect choice of the next-generation fiber optical gyroscope(FOG),with excellent temperature,electromagnetism and radiation adaptability.Numerical aperture is an important optical parameter of PBF for application in FOG.The PBF’s maximum theoretical numerical aperture(NAmax)is calculated and compared with the far-field numerical aperture(NAeff)through experiments.The result indicates that the relationship between NAmax and NAeff has much stronger dependence on wavelength than that of the conventional fiber,and they get close at wavelengths near the middle of the photonic bandgap with the error less than 5%.Furthermore,photonic bandgap fiber optical gyroscope(PBFOG)with no fusion splicing points is proposed,and the optimization method and results of the PBF’s structure parameters for application in PBFOG are given from the aspect of numerical aperture.展开更多
基金Project(2012BAF08B02)supported by Key Project in the National Science and Technology Pillar Program During the Twelfth Five-year Plan Period,China
文摘Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.
文摘The variations of drag force acting on the windbreak and the bulk drag coefficients for different windbreak widths were studied experimentally in the Eiffel-type non-circulating wind tunnel at the Hydraulic Engineering Laboratory, Saitama University, Japan, to elucidate the effects of windbreak width in the wind direction on wind velocity reduction behind a windbreak. The variations of flow field for different windbreak widths were studied numerically by using the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equation with a k-ε turbulence closure model. Results show that the total drag force to wind increased with increasing windbreak width, but the bulk drag coefficient decreased slightly. The relationship between the bulk drag coefficient Cd and the windbreak width W and height H can be presented by the equation of Cd=kd (W/H)-b (kd, b: constants). The result of the numerical simulation shows that the windbreak width greatly affects the location and the value of the minimum wind velocity. The wind velocity decreased by 15%–22% as the windbreak width increased.
基金supported by the National Natural Science Foundation of China(Grant No.61205077)
文摘Air-core photonic bandgap fiber(PBF)is the perfect choice of the next-generation fiber optical gyroscope(FOG),with excellent temperature,electromagnetism and radiation adaptability.Numerical aperture is an important optical parameter of PBF for application in FOG.The PBF’s maximum theoretical numerical aperture(NAmax)is calculated and compared with the far-field numerical aperture(NAeff)through experiments.The result indicates that the relationship between NAmax and NAeff has much stronger dependence on wavelength than that of the conventional fiber,and they get close at wavelengths near the middle of the photonic bandgap with the error less than 5%.Furthermore,photonic bandgap fiber optical gyroscope(PBFOG)with no fusion splicing points is proposed,and the optimization method and results of the PBF’s structure parameters for application in PBFOG are given from the aspect of numerical aperture.