期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
阻尼非线性Schrdinger方程的数值研究及其在光孤立子通信中的应用
1
作者 唐世敏 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 1993年第3期322-337,共16页
本文用Petrov-Galerkin有限元法构造了求解阻尼非线性Schr(?)dinger方程初值问题高精度的通用数值格式。使用此格式,先在无阻尼的情况下数值求解了单个和多个、一阶和高阶孤立子的传播及相互作用问题。所得数值解与分析解高度吻合,从而... 本文用Petrov-Galerkin有限元法构造了求解阻尼非线性Schr(?)dinger方程初值问题高精度的通用数值格式。使用此格式,先在无阻尼的情况下数值求解了单个和多个、一阶和高阶孤立子的传播及相互作用问题。所得数值解与分析解高度吻合,从而考验了本方法的精度和稳定性。然后加上阻尼项,得到阻尼使一阶和高阶孤立子在传播和相互作用中振幅衰减和周期延长的具体规律,从而为光孤立子通信总体方案设计和参数选择提供了一个有效的数值实验手段。 展开更多
关键词 薛定谔方程 非线性 光孤立子通信
下载PDF
超大容量长距离光孤立子通信技术
2
作者 于皓 《世界产品与技术》 1997年第3期4-5,共2页
本文叙述近期光信号传输技术的发展趋势及其他一些与光孤立子通信技术有关的技术。
关键词 信号传输技术 光孤立子通信 发展动向 通信
下载PDF
通信系统的又一次革命,光纤光孤立子通信系统
3
作者 钟卫平 《光的世界》 1992年第2期5-6,共2页
关键词 光孤立子通信系统 通信
下载PDF
Statistical characteristics and effects of polarization mode dispersion in dispersion managed soliton systems
4
作者 XU Ming JI Jian-hua 《Optoelectronics Letters》 EI 2006年第3期199-202,216,共5页
Firstly,the JME(Jones matrix eigen) method is used to simulate the statistical characteristics of first- and second-order PMD in dispersion management system. Then,with help of the CNLSE (coupled nonlinear Schrodin... Firstly,the JME(Jones matrix eigen) method is used to simulate the statistical characteristics of first- and second-order PMD in dispersion management system. Then,with help of the CNLSE (coupled nonlinear Schrodinger equations) ,the effects of PMD on DMS (dispersion managed soliton) transmission is studied with a variational method. The simplified relationships of the statistical parameters of second-order and first-order of PMD in dispersion management system have been gotten,from which the detailed information of second-order can be obtained, if the condition of DGD is given. The results have shown that the first and second-order PMD (polarization mode dispersion) vectors influence the evolution of energy and Mean square of time displacement of DMS in high-speed bit rates systems. When DPMD^1st〉0.3 ps/km^1/2 ,we must consider some means of control(for example the filter) to restrain the PMD. 展开更多
关键词 通信 孤立系统 偏振模式 色散
下载PDF
Study of Exact Solutions to Cubic-Quintic Nonlinear Schrdinger Equation in Optical Soliton Communication
5
作者 刘彬 阮航宇 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第5期731-736,共6页
A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrdinger equation (CQNLS) with varying dispersion,nonlinearity,and gain... A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrdinger equation (CQNLS) with varying dispersion,nonlinearity,and gain or absorption.Algebraic solitary-wave as well as kink-type solutions in three kinds of optical fibers represented by coefficient varying CQNLS equations are studied in detail.Some new exact solutions of optical solitary wave with a simple analytic form in these models are presented.Appropriate solitary wave solutions are applied to discuss soliton propagation in optical fibres,and the amplification and compression of pulses in optical fibre amplifiers. 展开更多
关键词 symmetry method cubic-quintic nonlinear Schrdinger equation optical solitary wave
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部