光子晶体光纤(PCF)与传统单模光纤熔接时斜切熔接可以大大减小熔点处反射,但是仍然存在微弱的残余背向反射,为了精确测量该残余背向反射大小,本文基于低相干光干涉测量原理提出了一种Mach-Zehnder与Michelson混合型干涉仪。基于该干涉仪...光子晶体光纤(PCF)与传统单模光纤熔接时斜切熔接可以大大减小熔点处反射,但是仍然存在微弱的残余背向反射,为了精确测量该残余背向反射大小,本文基于低相干光干涉测量原理提出了一种Mach-Zehnder与Michelson混合型干涉仪。基于该干涉仪,对包层直径125μm实芯光子晶体光纤与传统单模光纤斜8°熔点,以及包层直径100μm实芯光子晶体光纤与传统单模光纤斜8°熔点处的背向反射进行了测量,得到背向反射率分别为-52.12 d B和-49.35 d B,并获得了熔点的位置信息。该干涉仪为光子晶体光纤斜切熔点残余背向反射的精确定位和测量提供了工具和手段,为熔点质量的改善奠定了基础。展开更多
文摘光子晶体光纤(PCF)与传统单模光纤熔接时斜切熔接可以大大减小熔点处反射,但是仍然存在微弱的残余背向反射,为了精确测量该残余背向反射大小,本文基于低相干光干涉测量原理提出了一种Mach-Zehnder与Michelson混合型干涉仪。基于该干涉仪,对包层直径125μm实芯光子晶体光纤与传统单模光纤斜8°熔点,以及包层直径100μm实芯光子晶体光纤与传统单模光纤斜8°熔点处的背向反射进行了测量,得到背向反射率分别为-52.12 d B和-49.35 d B,并获得了熔点的位置信息。该干涉仪为光子晶体光纤斜切熔点残余背向反射的精确定位和测量提供了工具和手段,为熔点质量的改善奠定了基础。