The nucleon effective interaction in the nuclear medium is investigated in the framework of the DiracBrueckner-Hartree-Fock (DBHF) approach. A new decomposition of the Dirac structure of nucleon self-energy in the DBH...The nucleon effective interaction in the nuclear medium is investigated in the framework of the DiracBrueckner-Hartree-Fock (DBHF) approach. A new decomposition of the Dirac structure of nucleon self-energy in the DBHF is adopted for asymmetric nuclear matter. The properties of finite nuclei are investigated with the nucleon effective interaction. The agreement with the experimental data is satisfactory. The relativistic microscopic optical potential in asymmetric nuclear matter is investigated in the DBHF approach. The proton scattering from nuclei is calculated and compared with the experimental data. A proper treatment of the resonant continuum for exotic nuclei is studied. The width effect of the resonant continuum on the pairing correlation is discussed. The quasiparticle relativistic random phase approximation based on the relativistic mean-field ground state in the response function formalism is also addressed.展开更多
Photodissociation of HOBr is an important step in the reaction network of the depletion of ozone in stratosphere.Here,we report the first three-dimensional potential energy surfaces for the lowest three singlet states...Photodissociation of HOBr is an important step in the reaction network of the depletion of ozone in stratosphere.Here,we report the first three-dimensional potential energy surfaces for the lowest three singlet states for HOBr,based on high level multi reference configuration interaction calculations.Quantum dynamics calculations are performed with a real wavepacket method,yielding not only absorption spectra but also internal state and angular distributions of the photodissociation fragments.Our results agree quantitatively with the measured total absorption cross sections of HOBr in the ultraviolet region and reproduce well the observed vibrationally cold and rotationally hot OH/OD fragments via photodissociation of HOBr/DOBr at 266 nm.In addition,we predict that the recoil anisotropy parameters for OH/OD are close to the limiting value of a parallel transition,suggesting a rapid dissociation process at 266 nm following an in-plane transition from the ground state(1^1A')to the 21A'state.This is consistent with the experimental conclusion derived from the measured rotational alignment.However,spin and electronic angular momenta need to be taken into account in the future to achieve a more quantitative agreement with experiment.Our work is expected to motivate further experimental investigations for this benchmark system.展开更多
A new modified formulation of the Additivity Rule (AR) was proposed to calculate the total electron scattering cross sections for CH4, CO2, NO2, and N2O, considering the overlapping between atoms in molecules and the ...A new modified formulation of the Additivity Rule (AR) was proposed to calculate the total electron scattering cross sections for CH4, CO2, NO2, and N2O, considering the overlapping between atoms in molecules and the not fully transparency of the molecules. The present calculation covers the range of impact energy from 10 to 3000 eV. The results are compared with experimental data and other theories where available. The atoms are presented by spherical complex optical potential, which is composed of static, exchange, polarization, and absorption terms.展开更多
In the framework of KMT multiple scattering theory, an optical potential for the intermediate energy proton-160 elastic scattering is presented based on the α particle model of 160. The differential cross sections, t...In the framework of KMT multiple scattering theory, an optical potential for the intermediate energy proton-160 elastic scattering is presented based on the α particle model of 160. The differential cross sections, the analyzing powers, and the total cross sections of the intermediate energy proton-160 scattering have been calculated by using the obtained optical potential. The main features of the measured angular distributions of the cross section and the analyzing power can be well described. The calculated total cross sections are in good agreement with the experimental data at energies below 0.7 GeV and underestimate the data about 8% at higher energies.展开更多
A new diabatic potential energy matrix(PEM)of the coupled~^(1)ππ^(*)and~1πσ*states for the~1πσ*-mediated photodissociation of thiophenol was constructed using a neural network(NN)approach.The diabatization of th...A new diabatic potential energy matrix(PEM)of the coupled~^(1)ππ^(*)and~1πσ*states for the~1πσ*-mediated photodissociation of thiophenol was constructed using a neural network(NN)approach.The diabatization of the PEM was specifically achieved by our recent method[Chin.J.Chem.Phys.34,825(2021)],which was based on adiabatic energies without the associated costly derivative couplings.The equation of motion coupled cluster with single and double excitations(EOM-CCSD)method was employed to compute adiabatic energies of two excited states in this work due to its high accuracy,simplicity,and efficiency.The PEM includes three dimensionalities,namely the S-H stretch,C-S-H bend,and C-C-S-H torsional coordinates.The root mean square errors of the NN fitting for the S1 and S2 states are 0.89 and 1.33 me V,respectively,suggesting the high accuracy of the NN method as expected.The calculated lifetimes of the S1 vibronic 00 and31 states are found to be in reasonably good agreement with available theoretical and experimental results,which validates the new EOM-CCSD-based PEM fitted by the NN approach.The combination of the diabatization scheme solely based on the adiabatic energies and the use of EOM-CCSD method makes the construction of reliable diabatic PEM quite simple and efficient.展开更多
The product branching ratio between different products in multichannel reactions is as important as the overall rate of reaction,both in terms of practical applications(e.g.models of combustion or atmosphere chemistry...The product branching ratio between different products in multichannel reactions is as important as the overall rate of reaction,both in terms of practical applications(e.g.models of combustion or atmosphere chemistry)in understanding the fundamental mechanisms of such chemical reactions.A global ground state potential energy surface for the dissociation reaction of deuterated alkyl halide CD_(3)CH_(2)F was computed at the CCSD(T)/CBS//B3 LYP/aug-cc-p VDZ level of theory for all species.The decomposition of CD_(3)CH_(2)F is controversial concerning C-F bond dissociation reaction and molecular(HF,DF,H_(2),D_(2),HD)elimination reaction.RiceRamsperger-Kassel-Marcus(RRKM)calculations were applied to compute the rate constants for individual reaction steps and the relative product branching ratios for the dissociation products were calculated using the steady-state approach.At the different energies studied,the RRKM method predicts that the main channel for DF or HF elimination from1,2-elimination of CD_(3)CH_(2)F is through a four-center transition state,whereas D_(2) or H_(2) elimination from 1,1-elimination of CD_(3)CH_(2)F occurs through a direct three-center elimination.At 266,248,and 193 nm photodissociation,the main product CD_(2)CH_(2)+DF branching ratios are computed to be 96.57%,91.47%,and 48.52%,respectively;however,at 157 nm photodissociation,the product branching ratio is computed to be 16.11%.Based on these transition state structures and energies,the following photodissociation mechanisms are suggested:at 266,248,193 nm,CD_(3)CH_(2)F→absorption of a photon→TS5→the formation of the major product CD_(2)CH_(2)+DF;at 157 nm,CD_(3)CH_(2)F→absorption of a photon→D/F interchange of TS1→CDH_(2)CDF→H/F interchange of TS2→CHD_(2)CHDF→the formation of the major product CHD_(2)+CHDF.展开更多
基金国家自然科学基金,the State Key Research Development Program
文摘The nucleon effective interaction in the nuclear medium is investigated in the framework of the DiracBrueckner-Hartree-Fock (DBHF) approach. A new decomposition of the Dirac structure of nucleon self-energy in the DBHF is adopted for asymmetric nuclear matter. The properties of finite nuclei are investigated with the nucleon effective interaction. The agreement with the experimental data is satisfactory. The relativistic microscopic optical potential in asymmetric nuclear matter is investigated in the DBHF approach. The proton scattering from nuclei is calculated and compared with the experimental data. A proper treatment of the resonant continuum for exotic nuclei is studied. The width effect of the resonant continuum on the pairing correlation is discussed. The quasiparticle relativistic random phase approximation based on the relativistic mean-field ground state in the response function formalism is also addressed.
基金supported by the National Key R&D Program of China (2017YFA0303500)Anhui Initiative in Quantum Information Technologies(AHY090200).
文摘Photodissociation of HOBr is an important step in the reaction network of the depletion of ozone in stratosphere.Here,we report the first three-dimensional potential energy surfaces for the lowest three singlet states for HOBr,based on high level multi reference configuration interaction calculations.Quantum dynamics calculations are performed with a real wavepacket method,yielding not only absorption spectra but also internal state and angular distributions of the photodissociation fragments.Our results agree quantitatively with the measured total absorption cross sections of HOBr in the ultraviolet region and reproduce well the observed vibrationally cold and rotationally hot OH/OD fragments via photodissociation of HOBr/DOBr at 266 nm.In addition,we predict that the recoil anisotropy parameters for OH/OD are close to the limiting value of a parallel transition,suggesting a rapid dissociation process at 266 nm following an in-plane transition from the ground state(1^1A')to the 21A'state.This is consistent with the experimental conclusion derived from the measured rotational alignment.However,spin and electronic angular momenta need to be taken into account in the future to achieve a more quantitative agreement with experiment.Our work is expected to motivate further experimental investigations for this benchmark system.
文摘A new modified formulation of the Additivity Rule (AR) was proposed to calculate the total electron scattering cross sections for CH4, CO2, NO2, and N2O, considering the overlapping between atoms in molecules and the not fully transparency of the molecules. The present calculation covers the range of impact energy from 10 to 3000 eV. The results are compared with experimental data and other theories where available. The atoms are presented by spherical complex optical potential, which is composed of static, exchange, polarization, and absorption terms.
基金The project supported by National Natural Science Foundation of China under Grant No. 10465001
文摘In the framework of KMT multiple scattering theory, an optical potential for the intermediate energy proton-160 elastic scattering is presented based on the α particle model of 160. The differential cross sections, the analyzing powers, and the total cross sections of the intermediate energy proton-160 scattering have been calculated by using the obtained optical potential. The main features of the measured angular distributions of the cross section and the analyzing power can be well described. The calculated total cross sections are in good agreement with the experimental data at energies below 0.7 GeV and underestimate the data about 8% at higher energies.
基金supported by the National Natural Science Foundation of China(No.22073073)the Startup Foundation of Northwest UniversityThe Double First-Class University Construction Project of Northwest University。
文摘A new diabatic potential energy matrix(PEM)of the coupled~^(1)ππ^(*)and~1πσ*states for the~1πσ*-mediated photodissociation of thiophenol was constructed using a neural network(NN)approach.The diabatization of the PEM was specifically achieved by our recent method[Chin.J.Chem.Phys.34,825(2021)],which was based on adiabatic energies without the associated costly derivative couplings.The equation of motion coupled cluster with single and double excitations(EOM-CCSD)method was employed to compute adiabatic energies of two excited states in this work due to its high accuracy,simplicity,and efficiency.The PEM includes three dimensionalities,namely the S-H stretch,C-S-H bend,and C-C-S-H torsional coordinates.The root mean square errors of the NN fitting for the S1 and S2 states are 0.89 and 1.33 me V,respectively,suggesting the high accuracy of the NN method as expected.The calculated lifetimes of the S1 vibronic 00 and31 states are found to be in reasonably good agreement with available theoretical and experimental results,which validates the new EOM-CCSD-based PEM fitted by the NN approach.The combination of the diabatization scheme solely based on the adiabatic energies and the use of EOM-CCSD method makes the construction of reliable diabatic PEM quite simple and efficient.
基金supported by the National Natural Science Foundation of China(No.91641116,No.21433004,No.91753103,and No.21933010)the NYU Global Seed Grantthe Laboratory and Equipment Management Office of ECNU。
文摘The product branching ratio between different products in multichannel reactions is as important as the overall rate of reaction,both in terms of practical applications(e.g.models of combustion or atmosphere chemistry)in understanding the fundamental mechanisms of such chemical reactions.A global ground state potential energy surface for the dissociation reaction of deuterated alkyl halide CD_(3)CH_(2)F was computed at the CCSD(T)/CBS//B3 LYP/aug-cc-p VDZ level of theory for all species.The decomposition of CD_(3)CH_(2)F is controversial concerning C-F bond dissociation reaction and molecular(HF,DF,H_(2),D_(2),HD)elimination reaction.RiceRamsperger-Kassel-Marcus(RRKM)calculations were applied to compute the rate constants for individual reaction steps and the relative product branching ratios for the dissociation products were calculated using the steady-state approach.At the different energies studied,the RRKM method predicts that the main channel for DF or HF elimination from1,2-elimination of CD_(3)CH_(2)F is through a four-center transition state,whereas D_(2) or H_(2) elimination from 1,1-elimination of CD_(3)CH_(2)F occurs through a direct three-center elimination.At 266,248,and 193 nm photodissociation,the main product CD_(2)CH_(2)+DF branching ratios are computed to be 96.57%,91.47%,and 48.52%,respectively;however,at 157 nm photodissociation,the product branching ratio is computed to be 16.11%.Based on these transition state structures and energies,the following photodissociation mechanisms are suggested:at 266,248,193 nm,CD_(3)CH_(2)F→absorption of a photon→TS5→the formation of the major product CD_(2)CH_(2)+DF;at 157 nm,CD_(3)CH_(2)F→absorption of a photon→D/F interchange of TS1→CDH_(2)CDF→H/F interchange of TS2→CHD_(2)CHDF→the formation of the major product CHD_(2)+CHDF.