In this paper, we report the discrimination of the viability of human umbilical cord mesenchymal stem cells(hUC-MSCs) with photo-induced delayed luminescence(DL). We measure the DL decay kinetics of hUC-MSCs using an ...In this paper, we report the discrimination of the viability of human umbilical cord mesenchymal stem cells(hUC-MSCs) with photo-induced delayed luminescence(DL). We measure the DL decay kinetics of hUC-MSCs using an ultraweak luminescence detection system, and find the significant difference in the weight distributions of the decay rate for hUC-MSCs with high and low viabilities. Spectral discrimination of hUC-MSCs with high and low viabilities is thus carried out by comparing the DL kinetics parameters, including the initial intensity, the peak decay rate and the peak weight value. Our results show that the novel optical method for the viability diagnosis of hUC-MSCs has a promising prospect.展开更多
基金supported by the National Natural Science Foundation of China(Nos.60508004 and 60778043)the National High Technology Research and Development Program of China(No.2011AA030205)+1 种基金the Doctoral Fund of Ministry of Education of China(No.20110031110035)the Tianjin Municipal Science and Technology Commission(No.08ZCDFGX09400)
文摘In this paper, we report the discrimination of the viability of human umbilical cord mesenchymal stem cells(hUC-MSCs) with photo-induced delayed luminescence(DL). We measure the DL decay kinetics of hUC-MSCs using an ultraweak luminescence detection system, and find the significant difference in the weight distributions of the decay rate for hUC-MSCs with high and low viabilities. Spectral discrimination of hUC-MSCs with high and low viabilities is thus carried out by comparing the DL kinetics parameters, including the initial intensity, the peak decay rate and the peak weight value. Our results show that the novel optical method for the viability diagnosis of hUC-MSCs has a promising prospect.