Vanadium dioxides were fabricated on normal glass substrates using reactive radio frequency (RF) magnetron sputtering. The oxygen flow volume and annealed temperatures as growth parameters are systematically investi...Vanadium dioxides were fabricated on normal glass substrates using reactive radio frequency (RF) magnetron sputtering. The oxygen flow volume and annealed temperatures as growth parameters are systematically investigated. The electrical and opti- cal properties of VO2 and Au:VO2 thin films with different growth conditions are discussed. The semiconductor-metal phase transition temperature decreased by -10~C for the sample with Au doping compared to the sample without Au doping. How- ever, the optical transmittance of Au:VO2 thin films is much lower than that of bare VO2. These results show that Au doping has a marked effect on the electrical and optical properties.展开更多
基金supported by the Fundamental Research Funds for Central Universities of China (Grant No. 2009JBM098)the Natural Science Foundation of Beijing (Grant No. 2113050)
文摘Vanadium dioxides were fabricated on normal glass substrates using reactive radio frequency (RF) magnetron sputtering. The oxygen flow volume and annealed temperatures as growth parameters are systematically investigated. The electrical and opti- cal properties of VO2 and Au:VO2 thin films with different growth conditions are discussed. The semiconductor-metal phase transition temperature decreased by -10~C for the sample with Au doping compared to the sample without Au doping. How- ever, the optical transmittance of Au:VO2 thin films is much lower than that of bare VO2. These results show that Au doping has a marked effect on the electrical and optical properties.