In this letter a Monte Carlo(MC) algorithm is used to simulate the propagation of polarized light in double-layer turbid media and the 2-dimentional backscattered Stokes vectors and Mueller matrices are obtained.Relat...In this letter a Monte Carlo(MC) algorithm is used to simulate the propagation of polarized light in double-layer turbid media and the 2-dimentional backscattered Stokes vectors and Mueller matrices are obtained.Relationships between backscattered Mueller matrix and optical properties,such as scattering,absorption and layered structure,are discussed in detail.Integrating the 2-dimentional Mueller matrix elements along radial and azimuthal directions,we obtain a reverse trend with respect to the optical parameters for upper and lower layers,which suggests possibilities for discriminating subtle optical properties in a double-layer structure using backscattered polarization patterns such as Mueller matrix.展开更多
基金supported by the Governmental Education Bureau of Fujian Province(No.JA10068)the 2009 Project for Scientific and Technical Development of Xiamen (No.3502Z20099007)
文摘In this letter a Monte Carlo(MC) algorithm is used to simulate the propagation of polarized light in double-layer turbid media and the 2-dimentional backscattered Stokes vectors and Mueller matrices are obtained.Relationships between backscattered Mueller matrix and optical properties,such as scattering,absorption and layered structure,are discussed in detail.Integrating the 2-dimentional Mueller matrix elements along radial and azimuthal directions,we obtain a reverse trend with respect to the optical parameters for upper and lower layers,which suggests possibilities for discriminating subtle optical properties in a double-layer structure using backscattered polarization patterns such as Mueller matrix.