TP381 98042455基于能量最小的统计三级截值模型=A statisticaltrinary clipped model based on minimum energy[刊,中]/常胜江,申金媛,张延忻(南开大学国家教委光学信息技术科学开放实验室.天津(300071)),杨建文,金成海(南开大学现代...TP381 98042455基于能量最小的统计三级截值模型=A statisticaltrinary clipped model based on minimum energy[刊,中]/常胜江,申金媛,张延忻(南开大学国家教委光学信息技术科学开放实验室.天津(300071)),杨建文,金成海(南开大学现代光学研究所.天津(300071))∥光学学报.—1997,17(10).展开更多
Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described ...Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described a laser dispersion method applied in the apparatus combining the high-n H atom Rydberg tagging time-of-flight technique with the vacuum ultraviolet free electron laser(VUV FEL).The Lyman-αlaser beam(121.6 nm)used in the H-atom detection was generated by the difference frequency four-wave mixing schemes in a Kr/Ar gas cell.After passing through an off-axis biconvex LiF lens,the 121.6 nm beam was dispersed from the 212.6 nm and 845 nm beams due to the different deflection angles experienced by these laser beams at the surfaces of the biconvex lens.This method can eliminate the background signal from the 212.6 nm photolysis.Combined with the VUV FEL,photodissociation of H2S at 122.95 nm was studied successfully.The TOF spectrum was measured and the derived total kinetic energy release spectrum was displayed.The results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics of molecules in the VUV region which involves the H-atom elimination processes.展开更多
This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip.The system is capable of transmitting 10 Gbps bidirectional date over hundreds of...This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip.The system is capable of transmitting 10 Gbps bidirectional date over hundreds of meters.It can provide error detection and correction by using 8B/10B encoding and Cyclical Redundancy Checking (CRC) encoding when only single-channel fails.The design scheme has already passed the simulation in FPGA.This technique is useful to enhance the capability and the reliability of the very short reach (VSR) transmission systems.展开更多
A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optic...A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optical field and the cold atom due to the interaction between them are discussed in detail, and a formula has been given for the variation of momentum and energy exchange volumes with time t in dress state while both the effects of photon recoil and Doppler effect are taken into consideration.展开更多
Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ...Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.展开更多
We present a method of realizing anticontrol chaos in a quantum confined system consisting of N two-levelatoms within a cavity, using a time-delayed optic field. The delay time plays a construction and organization ro...We present a method of realizing anticontrol chaos in a quantum confined system consisting of N two-levelatoms within a cavity, using a time-delayed optic field. The delay time plays a construction and organization role forproducing temporal chaos, while the interaction between atoms and photons creates spatial chaos. The chaos is quitesensitive to small time delayed. The spectral decomposition of the Hamiltonian obtained by using projection methodologyreveals that evolution of the left eigenvectors shows quite complicated chaotic fashions. The method we proposed maybe easily tested in experiment, and provides a general method using a sort of driving optic field to achieve anticontrol ofchaos for quantum systems.展开更多
The comparative analysis of modem mathematical models for 3D problems in electron optics is presented. The new approach to solve the electron optics problems in three dimensions is presented. It is based on the princi...The comparative analysis of modem mathematical models for 3D problems in electron optics is presented. The new approach to solve the electron optics problems in three dimensions is presented. It is based on the principal ray method suggested by G. Grinberg in 1948. That perspective approach was not realized before for full three-dimensional electron optic systems, probably because of the complexity of its mathematical apparatus. We describe the analytical technique of the BEM (boundary element method) for the field evaluation, and 3rd order aberration expansion for the trajectory analysis. The first version of such computer code "OPTICS-3" and some results of numerical simulations with this code were presented.展开更多
Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom anda two-mode cavity field.Effects of Kerr-like medium and the number of photon inside the cavity on the entanglemen...Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom anda two-mode cavity field.Effects of Kerr-like medium and the number of photon inside the cavity on the entanglementare studied.Our results show that atomic initial state must be superposed,so that the two cavity field modes can beentangled.Moreover,we also conclude that the number of photon in the two cavity mode should be equal.The interactionbetween modes,namely,the Kerr effect,has a significant negative contribution.Note that the atom frequency and thecavity frequency have an indistinguishable effect,so a corresponding approximation has been made in this article.Theseresults may be useful for quantum information in optics systems.展开更多
A scheme for teleporting an arbitrary n-bit one-photon and vacuum entangled Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, the maximum entanglement GHZ state is used as a quantum channel. We fi...A scheme for teleporting an arbitrary n-bit one-photon and vacuum entangled Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, the maximum entanglement GHZ state is used as a quantum channel. We find a method of distinguishing four Bell states just by detecting the atomic states three times, which is irrelevant to the qubit number of the state to be teleported.展开更多
By introducing the entangled state representation and the two-mode Fresnel operator we provide quantum mechanical version for Bessel beam's classical propagation in ABCD optical system. This provides the opportunity ...By introducing the entangled state representation and the two-mode Fresnel operator we provide quantum mechanical version for Bessel beam's classical propagation in ABCD optical system. This provides the opportunity of studying various classical Fresnel transformations in the context of quantum optics.展开更多
We present two nonlocal entanglement concentration protocols(ECPs)to distill a subset of N-photon systems in a GreenbergerHorne-Zeilinger(GHZ)state or a W state from a set of photon systems in a partially entangled GH...We present two nonlocal entanglement concentration protocols(ECPs)to distill a subset of N-photon systems in a GreenbergerHorne-Zeilinger(GHZ)state or a W state from a set of photon systems in a partially entangled GHZ-like pure state or a lessentangled W-like state with known parameters,respectively.Our ECPs have some advantages.First,our ECPs work in a heralded way with linear-optical elements only,without the postselection based on nonlinear optics,far different from the previous ECPs.Second,they require only a copy of the less-entangled photon system in each round of the entanglement concentration process,not two copies,which decreases the difficulty of their implementation in experiment largely.Third,our ECPs avoid checking the photon number in the output modes of linear-optical elements with the sophisticated single-photon detectors.Moreover,all parties can operate the process for concentration simultaneously and independently,which leads to flexible operations and improves the performance greatly in experiment.These advantages make our ECPs useful in practical applications in long-distance quantum communication network.展开更多
The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the smallamplitude regime. While in this article, we focus on optomechanics in the extremely-large-amp...The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the smallamplitude regime. While in this article, we focus on optomechanics in the extremely-large-amplitude regime and consider both classical and quantum dynamics. Firstly, we study classical dynamics in a membrane-in-the-middle optomechanical system in which a partially reflecting and flexible membrane is suspended inside an optical cavity. We show that the membrane can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and exhibit dynamical multistability. Then, we study the dynamics of the quantum fluctuations around the classical orbits. By using the logarithmic negativity, we calculate the evolution of the quantum entanglement between the optical cavity mode and the membrane during the mechanical oscillation. We show that there is some synchronism between the classical dynamical process and the evolution of the quantum entanglement.展开更多
Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol(ECP) for nonlocal atom systems in the partial...Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol(ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low-Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics(QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low-Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.展开更多
In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field in the presence of the external magnetic field and compare its properties ...In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field in the presence of the external magnetic field and compare its properties with the corresponding closed system.Our result reveals that absorption,dispersion and group velocity of probe field can be manipulated by adjusting the phase difference between the two circularly polarized components of a single coherent field,magnetic field and cavity parameters i.e.the atomic exit rate from cavity and atomic injection rates.We show that the system can exhibit multiple electromagnetically induced transparency windows in the presence of the external magnetic field.The numerical result shows that the probe field in the open system can be amplified by appropriate choice of cavity parameters,while in the closed system with introduce appropriate phase difference between fields the probe field can be enhanced.Also it is shown that the group velocity of light pulse can be controlled by external magnetic field,relative phase of applied fields and cavity parameters.By changing the parameters the group velocity of light pulse changes from subluminal to superluminal light propagation and vice versa.展开更多
This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biologica...This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biological molecules such as DNA, protein and enzyme, the cell-based analysis and in vivo animal imaging are mainly discussed.展开更多
Ground state cooling of massive mechanical objects remains a difficult task restricted by the unresolved mechanical sidebands. We propose an optomechanically-induced-transparency cooling scheme to achieve ground state...Ground state cooling of massive mechanical objects remains a difficult task restricted by the unresolved mechanical sidebands. We propose an optomechanically-induced-transparency cooling scheme to achieve ground state cooling of mechanical motion without the resolved sideband condition in a pure optomechanical system with two mechanical modes coupled to the same optical cavity mode. We show that ground state cooling is achievable for sideband resolution ωm/k as low as - 0.003. This provides a new route for quantum manipulation of massive macroscopic devices and high-precision measurements.展开更多
Purpose: The aim of this study is to discuss the results of different intramedullary devices used in the management of paediatric radial neck fractures and to suggest methods to avoid the pitfalls of the technique. M...Purpose: The aim of this study is to discuss the results of different intramedullary devices used in the management of paediatric radial neck fractures and to suggest methods to avoid the pitfalls of the technique. Methods: Thirty patients with isolated Judet III and IV fractures were included in this prospective study. Judet I and II fractures and radial neck fractures associated with other injuries were excluded. The final results were graded using the Metaizeau functional scoring system and Oxford Elbow Score. Results: The functional result was good to excellent in 24 of 30 cases (80%). The mean Oxford Elbow Score was 44.32. The mean follow-up was 40.11 months. The complications seen were radiocapitellar joint penetration - 6 cases at mean 4.87 weeks, redisplacement - 6, radial epiphyseal sclerosis - 5, and heterotopic ossification 1 case. Conclusion: lntramedullary K wires may result in radiocapitellar joint penetration. Titanium Elastic Nail System should not be used as purely fixation devices as they may not prevent redisplacement. Regular follow-up until at least 6 weeks is essential. Patients who have a Judet IV fracture and need open reduction should be given a guarded prognosis. The paper highlights the pitfalls of the technique and makes recommendations regarding the type of implant, follow-up and patient counselling in Judet IV fractures.展开更多
We create a potential for light with a phase mirror and then experimentally realize a photonic quantum ratchet in an all-optical system, in which ratchet effects can be observed with the naked eye up to more than 22 s...We create a potential for light with a phase mirror and then experimentally realize a photonic quantum ratchet in an all-optical system, in which ratchet effects can be observed with the naked eye up to more than 22 steps, and quantum resonance can be demonstrated. Our method also provides a new means to simulate quantum particles with classical light, and it can be applied to investigate many other quantum phenomena.展开更多
文摘TP381 98042455基于能量最小的统计三级截值模型=A statisticaltrinary clipped model based on minimum energy[刊,中]/常胜江,申金媛,张延忻(南开大学国家教委光学信息技术科学开放实验室.天津(300071)),杨建文,金成海(南开大学现代光学研究所.天津(300071))∥光学学报.—1997,17(10).
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)the National Natural Science Foundation of China (NSFC Center for Chemical Dynamics (No.21688102)+4 种基金the National Natural Science Foundation of China (No.21673232, No.21873099, No.21922306)the International Partnership Program of Chinese Academy of Sci-ences (No.121421KYSB20170012)supported by the National Natural Science Foundation of China (No.21973010)supported by the National Natural Science Foundation of China (No.21773236)supported by the Natural Science Research Project of Education Department of Anhui Province (No.KJ2019A0521).
文摘Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described a laser dispersion method applied in the apparatus combining the high-n H atom Rydberg tagging time-of-flight technique with the vacuum ultraviolet free electron laser(VUV FEL).The Lyman-αlaser beam(121.6 nm)used in the H-atom detection was generated by the difference frequency four-wave mixing schemes in a Kr/Ar gas cell.After passing through an off-axis biconvex LiF lens,the 121.6 nm beam was dispersed from the 212.6 nm and 845 nm beams due to the different deflection angles experienced by these laser beams at the surfaces of the biconvex lens.This method can eliminate the background signal from the 212.6 nm photolysis.Combined with the VUV FEL,photodissociation of H2S at 122.95 nm was studied successfully.The TOF spectrum was measured and the derived total kinetic energy release spectrum was displayed.The results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics of molecules in the VUV region which involves the H-atom elimination processes.
文摘This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip.The system is capable of transmitting 10 Gbps bidirectional date over hundreds of meters.It can provide error detection and correction by using 8B/10B encoding and Cyclical Redundancy Checking (CRC) encoding when only single-channel fails.The design scheme has already passed the simulation in FPGA.This technique is useful to enhance the capability and the reliability of the very short reach (VSR) transmission systems.
文摘A model has been established for the interaction between a single-mode optical field and a 2-energy-level cold atom with exact analytic solutions given. The processes of momentum and energy exchanges between the optical field and the cold atom due to the interaction between them are discussed in detail, and a formula has been given for the variation of momentum and energy exchange volumes with time t in dress state while both the effects of photon recoil and Doppler effect are taken into consideration.
基金Supported by the Research Starting Funds of Tianjin Polytechnic University under Grant Nos.20080033 and 20070010
文摘Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.
文摘We present a method of realizing anticontrol chaos in a quantum confined system consisting of N two-levelatoms within a cavity, using a time-delayed optic field. The delay time plays a construction and organization role forproducing temporal chaos, while the interaction between atoms and photons creates spatial chaos. The chaos is quitesensitive to small time delayed. The spectral decomposition of the Hamiltonian obtained by using projection methodologyreveals that evolution of the left eigenvectors shows quite complicated chaotic fashions. The method we proposed maybe easily tested in experiment, and provides a general method using a sort of driving optic field to achieve anticontrol ofchaos for quantum systems.
文摘The comparative analysis of modem mathematical models for 3D problems in electron optics is presented. The new approach to solve the electron optics problems in three dimensions is presented. It is based on the principal ray method suggested by G. Grinberg in 1948. That perspective approach was not realized before for full three-dimensional electron optic systems, probably because of the complexity of its mathematical apparatus. We describe the analytical technique of the BEM (boundary element method) for the field evaluation, and 3rd order aberration expansion for the trajectory analysis. The first version of such computer code "OPTICS-3" and some results of numerical simulations with this code were presented.
基金Supported by National Natural Science Foundation of China under Grant Nos.10604053,2006CB932603,and 90305026Beihang Lantian Project
文摘Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom anda two-mode cavity field.Effects of Kerr-like medium and the number of photon inside the cavity on the entanglementare studied.Our results show that atomic initial state must be superposed,so that the two cavity field modes can beentangled.Moreover,we also conclude that the number of photon in the two cavity mode should be equal.The interactionbetween modes,namely,the Kerr effect,has a significant negative contribution.Note that the atom frequency and thecavity frequency have an indistinguishable effect,so a corresponding approximation has been made in this article.Theseresults may be useful for quantum information in optics systems.
基金Project supported by the Natural Science Foundation of Henan Province, China (Grant No 0511010600) and the Education Department of Henan Province, China (Grant No 2006140005).
文摘A scheme for teleporting an arbitrary n-bit one-photon and vacuum entangled Greenberger-Horne-Zeilinger (GHZ) state is proposed. In this scheme, the maximum entanglement GHZ state is used as a quantum channel. We find a method of distinguishing four Bell states just by detecting the atomic states three times, which is irrelevant to the qubit number of the state to be teleported.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10775097 and 10874174
文摘By introducing the entangled state representation and the two-mode Fresnel operator we provide quantum mechanical version for Bessel beam's classical propagation in ABCD optical system. This provides the opportunity of studying various classical Fresnel transformations in the context of quantum optics.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174039 and 11474026)the Program for New Century Excellent Talents in University(Grant No.NECT-11-0031)the Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(Grant No.SKLNST-2013-1-13)
文摘We present two nonlocal entanglement concentration protocols(ECPs)to distill a subset of N-photon systems in a GreenbergerHorne-Zeilinger(GHZ)state or a W state from a set of photon systems in a partially entangled GHZ-like pure state or a lessentangled W-like state with known parameters,respectively.Our ECPs have some advantages.First,our ECPs work in a heralded way with linear-optical elements only,without the postselection based on nonlinear optics,far different from the previous ECPs.Second,they require only a copy of the less-entangled photon system in each round of the entanglement concentration process,not two copies,which decreases the difficulty of their implementation in experiment largely.Third,our ECPs avoid checking the photon number in the output modes of linear-optical elements with the sophisticated single-photon detectors.Moreover,all parties can operate the process for concentration simultaneously and independently,which leads to flexible operations and improves the performance greatly in experiment.These advantages make our ECPs useful in practical applications in long-distance quantum communication network.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175094 and 91221205)the National Key Basic Research Program of China(Grant No.2011CB9216002)
文摘The study of optomechanical systems has attracted much attention, most of which are concentrated in the physics in the smallamplitude regime. While in this article, we focus on optomechanics in the extremely-large-amplitude regime and consider both classical and quantum dynamics. Firstly, we study classical dynamics in a membrane-in-the-middle optomechanical system in which a partially reflecting and flexible membrane is suspended inside an optical cavity. We show that the membrane can present self-sustained oscillations with limit cycles in the shape of sawtooth-edged ellipses and exhibit dynamical multistability. Then, we study the dynamics of the quantum fluctuations around the classical orbits. By using the logarithmic negativity, we calculate the evolution of the quantum entanglement between the optical cavity mode and the membrane during the mechanical oscillation. We show that there is some synchronism between the classical dynamical process and the evolution of the quantum entanglement.
基金supported by the National Natural Science Foundation of China(Grant Nos.61471050,61377097,11404031 and 61571060)the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(Grant No.151063)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2015RC28)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant No.IPOC2015ZT05)
文摘Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol(ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low-Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics(QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low-Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.
文摘In this paper we investigate the optical properties of an open four-level tripod atomic system driven by an elliptically polarized probe field in the presence of the external magnetic field and compare its properties with the corresponding closed system.Our result reveals that absorption,dispersion and group velocity of probe field can be manipulated by adjusting the phase difference between the two circularly polarized components of a single coherent field,magnetic field and cavity parameters i.e.the atomic exit rate from cavity and atomic injection rates.We show that the system can exhibit multiple electromagnetically induced transparency windows in the presence of the external magnetic field.The numerical result shows that the probe field in the open system can be amplified by appropriate choice of cavity parameters,while in the closed system with introduce appropriate phase difference between fields the probe field can be enhanced.Also it is shown that the group velocity of light pulse can be controlled by external magnetic field,relative phase of applied fields and cavity parameters.By changing the parameters the group velocity of light pulse changes from subluminal to superluminal light propagation and vice versa.
基金support of the National Natural Science Foun-dation of China (20821063 & 50972058)supported by the National Basic Research Program of China (2011CB933502)
文摘This review presents a simple introduction on the unique properties and general synthesis of quantum dots (QDs) in which we lay emphasis on the optical applications in the biological system. The detection of biological molecules such as DNA, protein and enzyme, the cell-based analysis and in vivo animal imaging are mainly discussed.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB328704 and 2013CB921904)the National Natural Science Foundation of China(Grant Nos.11474011,11222440 and 61435001)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120001110068)the Optical Radiation Cooling and Heating in Integrated Devices Program of Defense Advanced Research Projects Agency(Grant No.C11L10831)
文摘Ground state cooling of massive mechanical objects remains a difficult task restricted by the unresolved mechanical sidebands. We propose an optomechanically-induced-transparency cooling scheme to achieve ground state cooling of mechanical motion without the resolved sideband condition in a pure optomechanical system with two mechanical modes coupled to the same optical cavity mode. We show that ground state cooling is achievable for sideband resolution ωm/k as low as - 0.003. This provides a new route for quantum manipulation of massive macroscopic devices and high-precision measurements.
文摘Purpose: The aim of this study is to discuss the results of different intramedullary devices used in the management of paediatric radial neck fractures and to suggest methods to avoid the pitfalls of the technique. Methods: Thirty patients with isolated Judet III and IV fractures were included in this prospective study. Judet I and II fractures and radial neck fractures associated with other injuries were excluded. The final results were graded using the Metaizeau functional scoring system and Oxford Elbow Score. Results: The functional result was good to excellent in 24 of 30 cases (80%). The mean Oxford Elbow Score was 44.32. The mean follow-up was 40.11 months. The complications seen were radiocapitellar joint penetration - 6 cases at mean 4.87 weeks, redisplacement - 6, radial epiphyseal sclerosis - 5, and heterotopic ossification 1 case. Conclusion: lntramedullary K wires may result in radiocapitellar joint penetration. Titanium Elastic Nail System should not be used as purely fixation devices as they may not prevent redisplacement. Regular follow-up until at least 6 weeks is essential. Patients who have a Judet IV fracture and need open reduction should be given a guarded prognosis. The paper highlights the pitfalls of the technique and makes recommendations regarding the type of implant, follow-up and patient counselling in Judet IV fractures.
基金supported by the National Basic Research Program of China(2011CB921200)the National Natural Science Foundation of China(11325419,11274289,61327901)the Fundamental Research Funds for the Central Universities(WK2470000011)
文摘We create a potential for light with a phase mirror and then experimentally realize a photonic quantum ratchet in an all-optical system, in which ratchet effects can be observed with the naked eye up to more than 22 steps, and quantum resonance can be demonstrated. Our method also provides a new means to simulate quantum particles with classical light, and it can be applied to investigate many other quantum phenomena.