期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一维环Aharonov-Bohm势对极化子的影响
1
作者 方奕忠 周义昌 何广平 《中山大学学报(自然科学版)》 CAS CSCD 1996年第5期19-21,共3页
讨论Aharonov-Bohm势对极化子的影响,证明了虽然有势无场,对电子不产生直接的动力学作用,但磁通仍然影响极化子的峰高、宽度、迁移速度和晶格形变能.
关键词 极化子 光学振动模 A-B势 薛定谔方程
下载PDF
Vibration Spectra of Quasi-confined Optical Phonon Modes in an Asymmetric Wurtzite AlxGa1-xN/GaN/AlyGa1-yN Quantum Well 被引量:2
2
作者 ZHANG Li SHI Jun-Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第2期349-354,共6页
Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wur... Based on the dielectric continuum model and Loudon's uniaxial crystal model, the properties of the quasi. confined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic .potential expanding. The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen. Numerical calculations on an asymmetric AlN/GaN/AIo,15 Gao.85N Wurtzite Q W are performed. A detailed comparison with the symmetric wurtzite QW was also performed. The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes. 展开更多
关键词 quasi-confined optical phonon asymmetric wurtzite QW nitride-based semiconductor
下载PDF
Surface roughness prediction model in ultrasonic vibration assisted grinding of BK7 optical glass 被引量:9
3
作者 ZHAO Pei-yi ZHOU Ming +1 位作者 ZHANG Yuan-jing QIAO Guo-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期277-286,共10页
Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultr... Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results. 展开更多
关键词 surface roughness prediction model ultrasonic vibration optical glass GPR regression
下载PDF
The dehydration dynamics of a model cell membrane induced by cholesterol analogue 6-ketocholestanol investigated using sum frequency generation vibrational spectroscopy 被引量:1
4
作者 Sulan Ma Kangzhen Tian Shuji Ye 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第7期1176-1186,共11页
Dehydration of a surface is the first step for the interaction between biomolecules and the surface. In this study, we systemati- cally investigated the influence of cholesterol analog 6-ketocholestanol (6-KC) on th... Dehydration of a surface is the first step for the interaction between biomolecules and the surface. In this study, we systemati- cally investigated the influence of cholesterol analog 6-ketocholestanol (6-KC) on the dehydration of model cell membrane, using sum frequency generation vibrational spectroscopy. In pure DI water environment, two separate dehydration dynamic components were observed in neutrally charged and isotopically labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and positively charged 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine(chloride salt) (DMEPC) bilayer: a large-amplitude fast component and a small-amplitude slow component, which originated from the water molecules with a weak and a strong water-membrane bound strengths, respectively. Dehydration of a negatively charged mixed DMPC/DMPG bilayer lead to the membrane-bound water being reorganized to ordered structures quickly. It is evident that the water-membrane bound strengths depend largely on the charge status of the lipid and has an order of neutrally charged membrane〈〈positively charged mem- brane〈〈negatively charged membrane. In an ionic environment, KC1 solution can not only dehydrate DMPC bilayer, but also prevent the 6-KC fiom further dehydrating this model cell membrane. We observed that the dehydration dynamics behavior of DMPC bilayer in the presence of the chaotropic anions is similar to that of the negatively charged DMPG bilayer because of the penetration of chaotropic anions into the DMPC bilayer. The degree of dehydration difficulty in kosmotropic anions fol- lows a Hofmeister series and linearly correlates with the hydration Gibbs free energy of the anions. Our results provide a molecular basis for the interpretation of the Hofmeister effect of kosmotropic anions on ion transport proteins. 展开更多
关键词 membrane dehydration sum frequency generation membrane-bound water membrane dipole potential Hofmeistereffect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部